Oddziaływania efektywne niezależne od gęstości

Jacek Dobaczewski University of Warsaw & University of Jyväskylä

with Karim Bennaceur and Francesco Raimondi

Seminarium "Struktura jądra atomowego" Uniwersytet Warszawski 16 maja 2013

YVÄSKYLÄN YLIOPISTO

Outline

- **1. Introduction effective theories in physics**
- 2. Energy density functionals in nuclear physics
- 3. Effective interactions vs. functional

generators

- 4. Regularized pseudopotentials
- 5. Three-body forces vs. density-dependent terms
- 6. New functionals without density dependence
- 7. Conclusions

JYVÄSKYLÄN YLIOPISTO

YVÄSKYLÄN YLIOPISTO

An effective theory (ET) is a theory which "effectively" captures what is physically relevant in a given domain. The most appropriate description of particle interactions in the language of quantum field theory (QFT) depends on the energy at which the interactions are studied. **Objective reductionism** (Weinberg): the convergence of arrows of scientific explanation. **Emergence (Anderson): at each** new level of complexity entirely new properties appear and the understanding of the new behaviors requires research which I think is as fundamental in its nature as any other.

Elena Castellani, physics/0101039

Hydrogen atom perturbed near the center

Relative errors in the Swave binding energies are plotted versus: (i) the binding energy for the Coulomb theory (ii) the Coulomb theory augmented with a delta function in first-order perturbation theory (iii) the non-perturbative effective theory through a², and (iv) the effective theory through a⁴.

Phase shifts in the low-momentum expansion

VÄSKYLÄN V

Phenomenological functional generators

• Gogny*

$$V(ec{r}_1ec{r}_2;ec{r}_1'ec{r}_2') = \delta(ec{r}_1 - ec{r}_1')\delta(ec{r}_2 - ec{r}_2')V(ec{r}_1 - ec{r}_2),$$

where,

$$V(ec{r_1}-ec{r_2}) = \sum_{i=1,2} e^{-(ec{r_1}-ec{r_2})^2/\mu_i^2} imes (W_i + B_i P_\sigma - H_i P_ au - M_i P_\sigma P_ au)
onumber \ + t_3(1+P_\sigma)\delta(ec{r_1}-ec{r_2})
ho^{1/3} \left[rac{1}{2}(ec{r_1}+ec{r_2})
ight].$$

 $P_{\sigma} = \frac{1}{2}(1 + \vec{\sigma}_1 \cdot \vec{\sigma}_2)$ and $P_{\tau} = \frac{1}{2}(1 + \vec{\tau}_1 \cdot \vec{\tau}_2)$ are, respectively, the spin and isospin exchange operators of particles 1 and 2, $\rho(\vec{r})$ is the total density of the system at point \vec{r} , and $\mu_i = 0.7$ and $1.2 \,\mathrm{fm}$, W_i , B_i , H_i , M_i , and t_3 are parameters.

• Skyrme*

$$\begin{split} V(\vec{r}_{1}\vec{r}_{2};\vec{r}_{1}'\vec{r}_{2}') &= \left\{ t_{0}(1+x_{0}P^{\sigma}) + \frac{1}{6}t_{3}(1+x_{3}P^{\sigma})\rho^{\alpha}\left(\frac{1}{2}(\vec{r}_{1}+\vec{r}_{2})\right) \right. \\ &+ \frac{1}{2}t_{1}(1+x_{1}P^{\sigma})[\vec{k'}^{*2} + \vec{k}^{2}] + t_{2}(1+x_{2}P^{\sigma})\vec{k'}^{*}\cdot\vec{k} \right\} \delta(\vec{r}_{1} - \vec{r}_{1}')\delta(\vec{r}_{2} - \vec{r}_{2}')\delta(\vec{r}_{1} - \vec{r}_{2}), \\ &\text{where the relative-momentum operators read} \ \hat{\vec{k}} = \frac{1}{2i}\left(\vec{\nabla}_{1} - \vec{\nabla}_{2}\right), \ \hat{\vec{k}}' = \frac{1}{2i}\left(\vec{\nabla}_{1}' - \vec{\nabla}_{2}'\right). \\ &\text{*We omit the spin-orbit and tensor terms for simplicity.} \end{split}$$

JYVÄSKYLÄN YLIOPISTO

Jacek Dobaczewski

Regularized pseudopotentials

We regularize delta interaction by using the Gaussian function,

$$\delta(ec{r}) = \lim_{a o 0} g_a(ec{r}) = \lim_{a o 0} rac{e^{-rac{ec{r}^2}{a^2}}}{\left(a \sqrt{\pi}
ight)^3}.$$

Then, the resulting central two-body regularized pseudopotential reads,

$$V(ec{r}_1ec{r}_2;ec{r}_1'ec{r}_2') = \sum_{i=1}^4 \hat{P}_i \hat{O}_i(ec{k},ec{k}') \delta(ec{r}_1 - ec{r}_1') \delta(ec{r}_2 - ec{r}_2') g_a(ec{r}_1 - ec{r}_2),$$

where $\vec{k} = \frac{1}{2i}(\vec{\nabla}_1 - \vec{\nabla}_2)$ and $\vec{k}' = \frac{1}{2i}(\vec{\nabla}_1' - \vec{\nabla}_2')$ are the standard relativemomentum operators, and the Wigner, Bartlett, Heisenberg, and Majorana terms are given by the standard spin and isospin exchange operators, $\hat{P}_1 \equiv 1, \hat{P}_2 \equiv \hat{P}_{\sigma}, \hat{P}_3 \equiv -\hat{P}_{\tau}, \hat{P}_4 \equiv -\hat{P}_{\sigma}\hat{P}_{\tau}.$

To give a specific example, up to the second-order, that is, up to the next-to-leading-order (NLO) expansion, operators $\hat{O}_i(\vec{k}, \vec{k}')$ read

$$\hat{O}_i(ec{k},ec{k}') = T_0^{(i)} + rac{1}{2} T_1^{(i)} \left(ec{k'}^{*2} + ec{k}^2
ight) + T_2^{(i)} ec{k'}^* \cdot ec{k},$$

where $T_k^{(i)}$ are the channel-dependent coupling constants.

YVÄSKYLÄN YLIOPISTO

Regularized pseudopotentials

Let us first assume that the differential operators $\hat{O}_i(\vec{k}, \vec{k}')$ depend only on the sum of relative momenta, that is,

$$\hat{O}_i(ec{k},ec{k}') = \hat{O}_i\left(ec{k}+ec{k}'
ight) = \hat{O}_i\left(ec{k}-ec{k}'^*
ight), ~~ ext{which requires that}~~T_2^{(i)} = -T_1^{(i)}.$$

Such particular differential operators commute with the locality deltas $\delta(\vec{r}_1' - \vec{r}_1)\delta(\vec{r}_2' - \vec{r}_2)$, and thus can be applied directly onto the regularized delta $g_a(\vec{r}_1 - \vec{r}_2)$. In such a case, the pseudopotential reduces to a simple local potential

$$V(ec{r}) = \sum\limits_{i=1}^{4} \hat{P}_i V_i(ec{r}), = \sum\limits_{i=1}^{4} \hat{P}_i \hat{O}_i(ec{k}) g_a(ec{r}),$$

Moreover, since $\hat{O}_i(\vec{k})$ are scalar differential operators, the potentials must have forms of power series of Laplacians Δ in \vec{r} , that is,

$$V_i(ec{r}) = \sum\limits_{n=0}^{n_{max}} V_{2n}^{(i)} \Delta^n g_a(ec{r}),$$

VÄSKYLÄN YLIOPISTO

where $V_{2n}^{(i)}$ are the coupling constants at order 2n.

Regularized pseudopotentials vs. Gogny

39, 125103 (2012) Ċ J.D, K. Bennaceur, F. Raimondi, J. Phys.

Regularized pseudopotentials vs. Gogny

JYVÄSKYLÄN YLIOPISTO

Coupling constants of the regularized pseudopotentials

Order of expansion 2n

ÄSKYLÄN YLIOPISTO

Coupling constants of the regularized pseudopotentials in natural units

Skyrme's three-body interaction

Nuclear Physics 9 (1959) 615-634; C North-Holland Publishing Co., Amsterdam Not to be reproduced by photoprint or microfilm without written permission from the publisher

THE EFFECTIVE NUCLEAR POTENTIAL

T. H. R. SKYRME

Atomic Energy Research Establishment, Harwell, Didcot, Berks.

Received 18 October 1958

The effective interaction potential will *not* be the same as that defined in the self-consistent many-body theory (to which the variational principle is not applicable). The potential used in our analysis must contain three-body, and generally many-body, terms which describe the way in which interaction between two particles is influenced by the presence of others; the two-body terms alone should be related closely to the scattering between free nucleons.

These considerations have led to the following ansatz for the form of the effective potential:

$$T = \sum_{i < j} \sum_{i < j} t_{ij} + \sum_{i < j < k} \sum_{i < j < k} t_{ijk}$$
(2)

in which the many-body effects have been simulated by three-body terms alone, for the sake of simplicity of calculation.

JYVÄSKYLÄN YLIOPISTO

The density dependence is born

PHYSICAL REVIEW C

VOLUME 5, NUMBER 3

MARCH 1972

Hartree-Fock Calculations with Skyrme's Interaction. I. Spherical Nuclei*

D. Vautherin and D. M. Brink

For the three-body force Skyrme also assumed a zero-range force

$$v_{123}^{(3)} = t_3 \delta(\mathbf{\ddot{r}}_1 - \mathbf{\ddot{r}}_2) \delta(\mathbf{\ddot{r}}_2 - \mathbf{\ddot{r}}_3).$$
(7)

In the following we will show that for Hartree-Fock calculations of even-even nuclei, this force is equivalent to a two-body density-dependent interaction:

Volume 56B, number 3

PHYSICS LETTERS

others.

28 April 1975

(8)

SPIN SATURATION AND THE SKYRME INTERACTION $\stackrel{\text{\tiny \scale}}{\to}$

B.D. CHANG*

Received 18 March 1975

Of existing variants of the Skyrme interaction, those with strong three-body terms – in particular the variant SIII that is in best accord with experiment – overbind odd-mass and odd-odd nuclei and produce unstable spin-saturated Hartree-Fock ground states in nuclear matter and in even-even light nuclei. This difficulty can be removed either by imposition of an additional stability condition or by abandoning the three-body term in favor of the two-body density-dependent interaction equivalent to it in spin-saturated HF states.

 $v_{12} = \frac{1}{6}t_3(1+P_{\sigma})\delta(\mathbf{\vec{r}}_1-\mathbf{\vec{r}}_2)\rho\left(\frac{\mathbf{\vec{r}}_1+\mathbf{\vec{r}}_2}{2}\right).$

Such a term provides a simple phenomenological

scribes the way in which the interaction between

representation of many-body effects, and de-

two nucleons is influenced by the presence of

The density dependence is exploited

1.E.2

Nuclear Physics A238 (1975) 29-69; C North-Holland Publishing Co., Amsterdam

Not to be reproduced by photoprint or microfilm without written permission from the publisher

NUCLEAR GROUND-STATE PROPERTIES AND SELF-CONSISTENT CALCULATIONS WITH THE SKYRME INTERACTION (I). Spherical description

M. BEINER, H. FLOCARD and NGUYEN VAN GIAI

TABLE 5

Binding energy per particle E/A, Fermi momentum k_F , incompressibility coefficient K, effective mass ratio m^*/m and symmetry coefficients ε_1 and ε_2 [see eq. (17)] in nuclear matter calculated with the interactions SII to SVI

	t ₃ (MeV fm ⁶)	<i>E/A</i> (MeV)	k _F (fm ⁻¹)	K (MeV)	m* /m	ε _i (MeV)	ε ₂ (MeV)
SVI	17000	-15.77	1.29	364	0.95	26.89	0.67
SIII	14000	-15.87	1.29	356	0.76	28.16	0.83
SII	9331	-16.00	1.30	342	0.58	34.2	1.10
SIV	5000	-15.98	1.31	325	0.47	31.22	1.37
SV	0	-16.06	1.32	306	0.38	32.72	1.70

The interactions have been ordered according to the decreasing values of the parameter t_3 .

The density dependence causes havoc

Particle-number projection impossible Strong self interaction present

FIG. 11. (Color online) Deformation energy $E(\beta)$ as a function of quadrupole deformation β calculated for ³²Mg with the SIII force and volume pairing interaction. Results of the PAV HFB+LN calculations (squares and triangles) are compared with the VAP PNP results (dots). The standard HFB result is shown by open triangles.

J.D. et al., Phys. Rev. C 76, 054315 (2007)

D. Tarpanov. et al., to be published

YVÄSKYLÄN YLIOPISTO

First density-independent finite-range functional generator at a=0.8fm

Results with SV:

$ ho_{ m sat}$	E/A	K_∞	J	L	$K_{ m sym}$	
$0.1551 { m ~fm^{-3}}$	$-16.05~{\rm MeV}$	$305.7 \ \mathrm{MeV}$	$32.82 { m MeV}$	96.09 MeV	$24.17~{\rm MeV}$	

Nuc.	⁴⁰ Ca	⁴⁸ Ca	⁵⁶ Ni	⁷⁸ Ni	¹⁰⁰ Sn	^{132}Sn	²⁰⁸ Pb
E^{\exp}	-342.050	-415.998	-483.991	-641.780	-824.921	-1102.827	-1636.350
E^{calc}	-342.985	-418.177	-472.783	-650.148	-817.793	-1109.998	-1636.463
diff.	-0.935	-2.179	11.208	-8.368	7.128	-7.171	-0.113

Results with a = 0.8 fm:

$ ho_{ m sat}$	E/A	K_∞	J	L	$K_{ m sym}$	
$0.1600 \ {\rm fm}^{-3}$	$-16.00 { m MeV}$	$230.0 \mathrm{MeV}$	$32.00 { m MeV}$	$100.2 \ \mathrm{MeV}$	$83.26 { m MeV}$	

Nuc.	⁴⁰ Ca	⁴⁸ Ca	⁵⁶ Ni	⁷⁸ Ni	¹⁰⁰ Sn	^{132}Sn	²⁰⁸ Pb
$E^{ m exp}$	-342.050	-415.998	-483.991	-641.780	-824.921	-1102.827	-1636.350
$E_{10}^{ m calc}$	-341.876	-422.960	-480.475	-644.712	-821.079	-1101.619	-1622.441
diff.	-0.355	-8.017	2.031	-4.495	0.941	-2.080	6.404

JYVÄSKYLÄN YLIOPISTO

Masses of doubly magic nuclei

Conclusions

- 1. We introduced a new class of energy density functionals that are based on regularized pseudopotentials. They allow for constructing density-independent functional generators.
- 2. In our opinion, future prospects for using the proposed regularized (pseudo)potentials are high.
 - a. They may present better convergence properties than similar expansions based on the zero-range interactions.
 - b. They allow for convergent summations of contributions from high single-particle momenta,
 - c. They allow for formulating a consistent expansion in terms of the orders of derivatives, with the convergence properties gauged against the regularization scale.
 - d. They allow for consistent beyond-mean field calculations.
- 3. The regularized pseudopotentials give us a possibility of building an order-by-order correctible theory.

YVÄSKYLÄN YLIOPISTO

Thank you

JYVÄSKYLÄN YLIOPISTO

Rayleigh-Ritz Variational Method

$$egin{aligned} \hat{H}|\Psi_i
angle &= E_i|\Psi_i
angle \ & \Downarrow \ & |\Psi
angle &= a_0|\Psi_0
angle + a_1|\Psi_1
angle + a_2|\Psi_2
angle + \ldots \ & \langle\Psi|\hat{H}|\Psi
angle &= E_0|a_0|^2 + E_1|a_1|^2 + E_2|a_2|^2 + \ldots \ & \Downarrow \ & \Downarrow \ & \min_{|\Psi
angle} \langle\Psi|\hat{H}|\Psi
angle &= E_0 & \Leftarrow ext{Rayleigh-Ritz} \end{aligned}$$

JYVÄSKYLÄN YLIOPISTO

r

Energy density functional up to N³LO

Local (primary) densities are defined by four quantum numbers nLvJ as

$$ho_{nLvJ}^t(ec{r}) = \left\{ [K_{nL}
ho_v^t(ec{r}, ec{r}')]_J
ight\}_{ec{r}'=ec{r}},$$

where the *n*th-order and rank-*L* relative derivative operators K_{nL} act on the scalar (v = 0) or vector (v = 1) isoscalar (t = 0) or isovector (t = 1) nonlocal densities.

We act on each of the local primary densities with *m*th-order and rank-*I* derivative operator D_{mI} , and then couple ranks *I* and *J* to the total rank *J'*, which gives the local secondary densities, $[D_{mI}\rho_{nLvJ}^t(\vec{r})]_{J'}$. From primary and secondary densities we build terms of the EDF:

$$T_{mI,nLvJ}^{n'L'v'J',t}(\vec{r}) = [\rho_{n'L'v'J'}^t(\vec{r})[D_{mI}\rho_{nLvJ}^t(\vec{r})]_{J'}]_0,$$

Then, the total energy density reads

$$\mathcal{H}(\vec{r}) = \sum_{\substack{n'L'v'J',t\\mI,nLvJ,J'}} C_{mI,nLvJ}^{n'L'v'J',t} T_{mI,nLvJ}^{n'L'v'J',t}(\vec{r}),$$

where $C_{mI,nLvJ}^{n'L'v'J',t}$ are coupling constants and the summation again runs over all allowed indices.

ZÄSKYLÄN YLIOPISTO

Jacek Dobaczewski

Energy density functional up to N³LO Numbers of local densities

Numbers terms in the EDF

Multiply by a		order	T-even	T-odd	total	Galilean	Gauge
factor of 2 for						invariant	invariant
· 1 1	6	0	1	1	2	2	2
isoscalar and		2	6	6	12	7	7
isovector	\rightarrow	4	22	23	45	15	6
terms		6	64	65	129	26	6
	′	N ³ LO	93	95	188	50	21

Convergence of the DME

The success and convergence of the DME expansions relies on the fact that the finite-range nuclear effective interactions (Gmatrix, Gogny, M3Y,...) are very short-range as compared to the spatial variations of nuclear densities. The quasi-local (gradient) expansion in nuclei works!

DME for the Gogny direct energy

DME for the Gogny exchange energy

Pseudopotentials vs. energy density functional

Number of terms in the pseudopotential								
Galilean	2	7	15	26	50			
Gauge	2	7	6	6	21			

At any order and symmetry, the number of terms in the pseudopotential is exactly equal to the number of the EDF terms <u>for each isospin</u>. Therefore, there are <u>always</u> twice as many EDF terms as there are pseudopotential terms

For the fourth-order gauge-invariant pseudopotential, the EDF isvector terms can be expressed as linear combinations of the isoscaler terms as:

$C_{mI,nLvJ}^{n'L'v'J',1}$	= A(a	$C^{2202,0}_{00,2202} +$	$bC_{00,2212}^{2212,0} +$	$cC_{00,4211}^{0011,0}$ ·	$+ dC^{0000,0}_{40,0000}$	$+ eC_{40,00}^{0011}$	$_{011}^{,0}$ +	$fC_{42,001}^{0011,0}$
	A	a	b	с	d	e	f	
$C_{40,0000}^{0000,1}$	$\frac{1}{120}$	$-6\sqrt{15}$	$-18\sqrt{15}$	$-21\sqrt{5}$	$-40\sqrt{3}$	0	0	
$C_{40,0011}^{0011,1}$	$\frac{1}{120}$	$-18\sqrt{5}$	$18\sqrt{5}$	$7\sqrt{15}$	0	$-40\sqrt{3}$	0	
$C_{42,0011}^{0011,1}$	$-\frac{1}{\sqrt{3}}$	0	0	1	0	0	1	
$C^{2202,1}_{00,2202}$	1	$-3\sqrt{3}$	0	0	$-4\sqrt{15}$	$-12\sqrt{5}$	0	
$C_{00,4211}^{0011,1}$	$-\frac{1}{\sqrt{2}}$	0	0	1	0	0	4	
$C^{2212,1}_{00,2212}$	$\frac{1}{9}$	0	$-3\sqrt{3}$	0	$-4\sqrt{15}$	$4\sqrt{5}$	14	

Jacek Dobaczewski

JYVÄSKYLÄN YLIOPISTO

Continuity equation

Within the Kohn-Sham approach, the total energy is the sum of the kinetic and potential-energy terms,

 $E\{\rho\} = E_k\{\rho\} + E_p\{\rho\},\$

Let us now assume that the potential energy is invariant with respect to a unitary transformation of the density matrix, $U = \exp(i\eta G)$,

 $E_p\{
ho\} = E_p\{U
ho U^+\}, \implies {
m Tr}\Gamma[G,
ho] \equiv {
m Tr}G[\Gamma,
ho] = 0,$

which allows us to derive the equation of motion for the average value of $\langle G \rangle = \text{Tr} G \rho$.

$$i\hbar rac{\mathrm{d}}{\mathrm{d}t} \langle G
angle = i\hbar \mathrm{Tr} G rac{\mathrm{d}}{\mathrm{d}t}
ho = \mathrm{Tr} G[h,
ho] = \mathrm{Tr} G[T,
ho],$$

that is, the time evolution of $\langle G \rangle$ is governed solely by the kinetic term of the mean-field Hamiltonian.

The CE now results from specifying ηG to the local gauge transformation, that is, $\psi'_{\alpha}(r\sigma\tau) \equiv (U\psi_{\alpha})(r\sigma\tau) = e^{i\gamma(r)}\psi_{\alpha}(r\sigma\tau)$, which gives,

$$rac{\mathrm{d}}{\mathrm{d}t}
ho_{00}(r,t)=-rac{\hbar}{m}
abla\cdot j_{00}(r,t).$$

JYVÄSKYLÄN YLIOPISTO

- **1) Exact:** Minimization of E(Q) gives the exact E and exact Q
- Impractical: Derivation of E(Q) requires the full variation δ (bigger effort than to find the exact ground state)
- **3) Inspirational:** Can we build useful models E'(Q) of the exact E(Q)?
- **4) Experiment-driven:** E'(Q) works better or worse depending on the physical input used to build it.

JYVÄSKYLÄN YLIOPISTO

Pseudopotentials

In the central-like form, the pseudopotential is a sum of terms,

$$\hat{V} = \sum_{\tilde{n}'\tilde{L}'\tilde{n}\tilde{L}, v_{12}S} C_{\tilde{n}\tilde{L}, v_{12}S}^{\tilde{n}'\tilde{L}'} \hat{V}_{\tilde{n}\tilde{L}, v_{12}S}^{\tilde{n}'\tilde{L}'}.$$

Each term in the sum is accompanied by the corresponding strength parameter $C_{\tilde{n}\tilde{L},v_{12}S}^{\tilde{n}'\tilde{L}'}$, and explicitly reads,

$$\begin{split} \hat{V}_{\tilde{n}\tilde{L},v_{12}S}^{\tilde{n}'\tilde{L}'} &= \quad \frac{1}{2} i^{v_{12}} \left(\left[\left[K_{\tilde{n}'\tilde{L}'}'K_{\tilde{n}\tilde{L}} \right]_{S} \hat{S}_{v_{12}S} \right]_{0} + (-1)^{v_{12}+S} \left[\left[K_{\tilde{n}\tilde{L}}'K_{\tilde{n}'\tilde{L}'} \right]_{S} \hat{S}_{v_{12}S} \right]_{0} \right) \\ &\times \left(1 - \hat{P}^{M}\hat{P}^{\sigma}\hat{P}^{\tau} \right) \hat{\delta}_{12}(r_{1}'r_{2}';r_{1}r_{2}). \end{split}$$

 $K_{\tilde{n}\tilde{L}}$ are the spherical tensor derivatives of order \tilde{n} and rank \tilde{L} are built of $k = (\nabla_1 - \nabla_2)/2i$, The two-body spin operators $\hat{S}_{v_{12}S}$ are defined as,

$$\hat{S}_{v_{12}S} = \left(1 - rac{1}{2}\delta_{v_1,v_2}
ight) \left([\sigma^{(1)}_{v_1}\sigma^{(2)}_{v_2}]_S + [\sigma^{(1)}_{v_2}\sigma^{(2)}_{v_1}]_S
ight),$$

where $v_{12} = v_1 + v_2$ and $\sigma_{v\mu}^{(i)}$ are the spherical-tensor components of the rank-v Pauli matrices. The Dirac delta function,

$$\hat{\delta}_{12}(\vec{r}_1'\vec{r}_2',\vec{r}_1\vec{r}_2) = \delta(\vec{r}_1'-\vec{r}_1)\delta(\vec{r}_2'-\vec{r}_2)\delta(\vec{r}_1-\vec{r}_2),$$

ensures the locality and zero-range character of the pseudopotential.

JYVÄSKYLÄN YLIOPISTO

Regularized pseudopotentials

Below we determine coupling constants $V_{2n}^{(i)}$ in Eq. (??) by requiring that the lowest moments of the regularized and Gogny potentials are equal, that is,

$$M_{2m}^{(i)}\equiv\int r^{2m}G_i(r)\mathrm{d}^3r=\int r^{2m}V_i(r)\mathrm{d}^3r,$$

for $m = 0, 1, ..., n_{max}$. This conditions gives the coupling constants of the regularized potential in simple analytical forms,

$$\begin{split} V_{2n}^{(i)} &= \sum_{m=0}^{n} \left(-\frac{a^2}{4} \right)^{n-m} \frac{M_{2m}^{(i)}}{(n-m)!(2m+1)!} \\ &= \frac{1}{4^n n!} \sum_{k=1,2} G_k^{(i)} \left(a_k^2 - a^2 \right)^n, \end{split}$$

where $G_k^{(i)}$ and a_k are the parameters of the Gogny interaction.

/ÄSKYLÄN V

Regularized pseudopotentials vs. Gogny

SKVLÄN YLIOPISTO

32/21

39, 125103 (2012)

Ċ

Raimondi, J. Phys.

Ē

J.D, K. Bennaceur,

Regularized pseudopotentials vs. Gogny

Figure 3. The same as in figure 2, but for the deviations of binding energies scaled by the numbers of particles, $\Delta b = \Delta B/A$, and those of radii scaled by the nuclear sizes, $\Delta r = \Delta R/A^{1/3}$. Note that the N²LO results almost perfectly hide behind those obtained at N³LO.

Jacek Dobaczewski

