Neutrinowy eksperyment MINOS

Katarzyna Grzelak

Zakład Cząstek i Oddziaływań Fundamentalnych IFD UW

12.03.2008

PLAN

(1) Wprowadzenie
(2) Wiązka neutrin NuMI
(3) Eksperyment MINOS
(4) Oscylacje neutrin akceleratorowych w MINOS'ie

WSTEP

$$
\nu_{\mu} \quad \rightarrow
$$

- MINOS: eksperyment zbudowany w celu potwierdzenia hipotezy oscylacji neutrin i zmierzenia parametrów modelu oscylacji
- Kontrolowana wiązka neutrin z akceleratora
- Pierwsze oddziaływanie neutrina z wiązki w dalekim detektorze: 7 marzec 2005
- Wyniki dla do tej pory przeanalizowanych danych, odpowiadające 2.5×10^{20} pot (protonów na tarczę)

WPROWADZENIE

Eksperyment MINOS:
27 instytucji, 147 fizyków
Instytucje: Argonne, Arkansas Tech, Athens,
Benedictine, Brookhaven, Caltech, Cambridge, Campinas, Fermilab, Harvard, IIT, Indiana, Minnesota, Twin Cities, Minnesota-Duluth, Oxford, Pittsburgh, Rutherford, Sao Paulo, South Carolina,
Stanford, Sussex, Texas A\&M, Texas-Austin, Tufts, UCL, Uniwersytet Warszawski, William\&Mary

WPROWADZENIE

- MINOS: drugi w historii i jedyny obecnie zbierający dane eksperyment z długą bazą
- Bliski Detektor (ND) (1kt) w ośrodku Fermilab pod Chicago, 100m pod powierzchnią ziemi
- Daleki Detektor (FD) (5.4 kt) znajduje się 735km dalej w kopalni Soudan, w Minnesocie, 710 m pod powierzchnią ziemi
- Czas przelotu neutrina z Fermilab'u do Soudan: $\sim 2.5 \mathrm{~ms}$

MACIERZ MIESZANIA DLA NEUTRIN

Trzy zapachy neutrin jako kombinacja trzech stanów własnych masy.

$$
\left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=\left(\begin{array}{lll}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)\left(\begin{array}{c}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right)
$$

$$
U=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right)
$$

$s_{i j}=\sin \theta_{i j}$
$c_{i j}=\cos \theta_{i j}$
$\delta \rightarrow$ faza łamania CP

MACIERZ MIESZANIA DLA NEUTRIN, cz. 2

Zakładając zachowanie CP $(\delta=0)$:

$$
\left(\begin{array}{l}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=
$$

$\underbrace{\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23}\end{array}\right)}_{\begin{array}{c}\text { neutrina } \\ \text { atmosferyczne }\end{array}} \underbrace{\left(\begin{array}{ccc}c_{13} & 0 & s_{13} \\ 0 & 1 & 0 \\ -s_{13} & 0 & c_{13}\end{array}\right)}_{\text {poszukiwane }} \underbrace{\left(\begin{array}{ccc}c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1\end{array}\right)}_{\text {deficyt }}\left(\begin{array}{l}\nu_{1} \\ \nu_{2} \\ \nu_{3}\end{array}\right)$

			Eksperymenty
Super-K, K2K	CHOOZ	Homestake, SNO	kamienie milowe
MINOS	MINOS	KamLAND, Borexino	obecne
T2K	T2K,reaktorowe		przyszle

PRAWDOPODOBIEŃSTWO PRZEMIANY $\nu_{\alpha} \rightarrow \nu_{\beta}$

$$
\begin{gathered}
P_{\nu_{\alpha} \rightarrow \nu_{\beta}}(L)=\sum_{k}\left|U_{\alpha k}\right|^{2}\left|U_{\beta k}\right|^{2} \\
+2 R e \sum_{k>j} U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*} \exp \left[-i \frac{\Delta m_{k j}^{2}}{2 E_{\nu}} L\right] \\
\Delta m_{k j}^{2} \equiv m_{k}^{2}-m_{j}^{2}
\end{gathered}
$$

Parametry modelu: 3 kąty mieszania θ_{23}, θ_{13} i θ_{12}, 1 faza δ i dla trzech rodzajów neutrin 2 niezależne różnice mas Δm^{2}.

BADANIE ZJAWISKA OSCYLACJI W EKSPERYMENTACH AKCELERATOROWYCH

- obserwacje znikania neutrin mionowych

$$
P\left(\nu_{\mu} \rightarrow \nu_{\mu}\right) \simeq 1-\sin ^{2} 2 \theta_{23} \sin ^{2} \frac{1.27 \Delta m_{\mathrm{atm}}^{2} L}{E_{\nu}}
$$

Jednostki:

$$
\begin{aligned}
& \Delta m^{2}\left[e V^{2}\right] \\
& E_{\nu}[\mathrm{GeV}] \\
& L[k m]
\end{aligned}
$$

Maksimum oscylacji dla

$$
\frac{1.27 \Delta m_{a t m}^{2} L}{E_{\nu}}=\frac{\pi}{2}
$$

BADANIE ZJAWISKA OSCYLACJI W EKSPERYMENTACH AKCELERATOROWYCH

- obserwacje pojawiania się nowego rodzaju neutrin

$$
\begin{aligned}
P\left(\nu_{\mu} \rightarrow \nu_{e}\right) & \simeq \sin ^{2} 2 \theta_{13} \sin ^{2} \theta_{23} \sin ^{2} \Delta \\
& \mp \alpha \sin 2 \theta_{13} \sin \delta_{C P} \cos \theta_{13} \sin 2 \theta_{12} \sin 2 \theta_{23} \sin ^{3} \Delta \\
& +\alpha \sin 2 \theta_{13} \cos \delta_{C P} \cos \theta_{13} \sin 2 \theta_{12} \sin 2 \theta_{23} \cos \Delta \sin ^{2} \Delta \\
& +\alpha^{2} \cos ^{2} \theta_{23} \sin ^{2} 2 \theta_{12} \sin ^{2} \Delta
\end{aligned}
$$

$$
\Delta \equiv \frac{\Delta \mathrm{m}_{a t m}^{2} L}{4 E_{\nu}}, \quad \alpha \equiv \frac{\Delta \mathrm{m}_{\text {sol }}^{2}}{\Delta \mathrm{~m}_{a t m}^{2}}
$$

Dokładnie mierzy się tylko kombinację parametrów, a nie tylko samo $\sin ^{2} 2 \theta_{13}$

Cele eksperymentu MINOS

- Weryfikacja hipotezy oscylacji $\nu_{\mu} \rightarrow \nu_{\tau}$ i precyzyjny pomiar ($<10 \%$) parametrów modelu neutrin Δm_{23}^{2} and $\sin ^{2} 2 \theta_{23}$
- Poszukiwania jeszcze nie zaobserwowanych przy tej skali mas, oscylacji $\nu_{\mu} \rightarrow \nu_{e}$ (poszukiwanie θ_{13})
- Poszukiwanie/wykluczenie egzotycznych hipotez: sterylne neutrina,rozpad neutrina
- Pierwszy, bezpośredni pomiar oscylacji ν vs $\bar{\nu}$ (symetria CPT)
- Badanie oddziaływań ν, wyznaczanie przekrojów czynnych przy użyciu danych z bliskiego detektora
- Badanie mionów z promieniowania kosmicznego

Stan analiz eksperymentu MINOS

Neutrina akceleratorowe

- Pierwsze oddziaływanie w dalekim detektorze 7 marca 2005
- Pierwsze opublikowane wyniki (zanikanie ν_{μ} : w oparciu o 1.27×10^{20} pot (Run I) (215 oddziaływań ν_{μ})
- Do tej pory przeanalizowano 2.5×10^{20} pot (563 oddziaływań ν_{μ})
- Do chwili obecnej zebrano około 3.88×10^{20} pot (Run II + Run III)
- Prace nad analizą $\nu_{\mu} \rightarrow \nu_{e}$, NC, opracowaniem danych z ND

Stan analiz eksperymentu MINOS

Neutrina atmosferyczne

- Dane zbierane od lipca 2003
- Opublikowane wyniki:
- oddziaływania z wierzchołkiem wewnątrz detektora, rozdzielone ν_{μ} i $\overline{\nu_{\mu}}$, po selekcji ~ 0.25 oddziaływania na dzień
- miony z oddziaływań neutrin (poruszające się ku powierzchni ziemi i poziome), rozdzielone ν_{μ} i $\overline{\nu_{\mu}}$, po selekcji ~ 0.15 oddziaływania na dzień
- Prace nad połączeniem obu analiz

Stan analiz eksperymentu MINOS

Miony z promieniowania kosmicznego

- pomiar $N_{\mu^{+}} / N_{\mu^{-}}$
- daleki detektor (FD): rozróżnianie ładunku mionu dla p<250GeV/c, częstość rejestracji mionów $\sim 0.25 \mathrm{~Hz}$
- bliski detektor (ND): miony o średniej energii 8 GeV , częstość rejestracji mionów $\sim 10 \mathrm{~Hz}$

WIĄZKA NEUTRIN NuMI

WIAZZKA NEUTRIN NuMI

- Protony o energii 120 GeV z akceleratora Main Injector w Fermilabie

WIAZKA PIERWOTNA - PROTONY

 LICZBA DOSTARCZONYCH PROTONÓW

STRUKTURA WIĄZKI PIERWOTNEJ WIDZIANA W ND i FD

- Pierwotna wiązka protonów: wysyłana w 5-6 paczkach, w czasie $10 \mu \mathrm{~s}$
- 2.4×10^{13} protonów/puls co 2.2 s

Bliski Detektor

Daleki Detektor

WIĄZKA WTÓRNA - NEUTRINA

Unikalną cechą wiązki NuMI jest możliwość zmiany widma neutrin poprzez zmianę położenia tarczy.

wiązki neutrin (LE-10): 98.5 \% $\left(\nu_{\mu}+\overline{\nu_{\mu}}\right)\left(6.5 \% \overline{\nu_{\mu}}\right), 1.5 \%\left(\nu_{e}+\overline{\nu_{e}}\right)$
ν_{μ} głównie z rozpadów $\pi^{+} \rightarrow \mu^{+} \nu_{\mu}$

EKSPERYMENT MINOS

POtOŻENIE DETEKTORÓW

- Daleki Detektor (ND) \rightarrow
poszukiwanie oscylacji
- Bliski Detektor (FD) \rightarrow widmo energii niezakłócone przez oscylacje

MINOS: POŁOŻENIE DETEKTORÓW

DALEKI DETEKTOR: KOPALNIA SOUDAN

MINOS: BLISKI I DALEKI DETEKTOR

Bliski i Daleki Detektor eksperymentu MINOS mają tak bardzo jak to możliwe podobną budowę:

- naprzemiennie: stalowe płyty (2.54 cm) i paski scyntylatora (1 cm)
- paski w co drugiej płaszczyźnie są do siebie prostopadłe

MINOS: BLISKI I DALEKI DETEKTOR

MINOS: BLISKI I DALEKI DETEKTOR

- Bliski Detektor: 1kt, 282 płaszczyzny, $3.8 \mathrm{~m} \times 4.8 \mathrm{~m} \times 15 \mathrm{~m}$ 100m pod powierzchnią ziemi
- Daleki Detektor: 5.4 kt , 484 płaszczyzny , $8 \mathrm{~m} \times 8 \mathrm{~m} \times 30 \mathrm{~m}$ 710 m pod powierzchnią ziemi
- $B \sim 1.3$ T w obu detektorach

OSCYLACJE NEUTRIN AKCELERATOROWYCH w MINOS'ie

PRZYKłAD ANALIZY ZNIKANIA ν_{μ}

Symulacja Monte Carlo

$$
P\left(v_{\mu} \rightarrow v_{\mu}\right)=1-\frac{\sin ^{2} 2 \theta}{1} \sin ^{2}\left(1.267 \frac{\Delta m^{2} L}{2} L / E\right)
$$

TYPY ODDZIAŁYWAŃ NEUTRIN w MINOS'ie

- $\nu_{\mu} N \rightarrow \mu X$
- Sygnaturą oddziaływania CC ν_{μ} jest obecność długiego toru mionu
- $E_{\nu}=E_{\text {shower }}+E_{\mu}$
- Rozdzielczość energetyczna $55 \% \sqrt{(E)}$
- Dokładność pomiaru pędu mionu (6\% z zasięgu, 11\% z krzywizny)

TOPOLOGIE PRZYPADKÓW Z WIAZKI NuMI

Monte Carlo, Daleki Detektor

CC ν_{μ}

NC

REKONSTRUKCJA w MINOS'ie

REKONSTRUKCJA w MINOS’ie

TYPOWE ODDZIAEYWANIA - DANE

Bliski Detektor

Kilka przypadków rejestrowanych w czasie jednego pulsu wiązki. Odróżniane dzięki informacji czasowej i przestrzennej

Daleki Detektor

Częstość oddziaływań w FD znacznie niższa ($\sim 10^{-} 6 \times$ częstość w ND)

BLIND ANALYSIS

- Zabezpieczenie się przed nieumyślnym naginaniem wyników do oczekiwanego
- Wszystkie dane z Bliskiego Detektora są dostępne
- Część danych z Dalekiego Detektora ukryta (zgodnie z nieznaną funkcją długości przypadku i energii zdeponowanej w detektorze)
- Przed otwarciem puszki wszystkie procedury dotyczące analizy danych muszą być zamrożone
- Po otwarciu puszki dla pierwszej analizy, część danych z FD na nowo ukryta przy użyciu nowej funkcji

BLISKI DETEKTOR: PORÓWNANIE DANE/MC

TRACK VERTICES

TRACK ANGLES

WIDMA ENERGII W BLISKIM DETEKTORZE

- Dane były zbierane przy 7 różnych konfiguracjach wiązki (różne pozycje tarczy i różne prądy w rogach magnetycznych)
- Różnica pomiędzy MC a danymi zmienia się dla różnych konfiguracji wiązki \Rightarrow to sugeruje że źródłem rozbieżności są niedoskonałości w modelowaniu wiązki, a nie nieznajomości przekrojów czynnych

SELEKCJA PRZYPADKÓW CC ν_{μ}

(1) Co najmniej jeden dobrze zrekonstruowany tor (kandydat na mion)
(2) Wierzchołek oddziaływania w wiarygodnym obszarze detektora (fiducial volume):

- ND: $1 \mathrm{~m}<z<5 \mathrm{~m}, R<1 \mathrm{~m}$ od środka wiązki
- FD: $z>20 \mathrm{~cm}$ od pierwszej płaszczyzny, $z>2 \mathrm{~m}$ od ostatniej płaszczyzny , $R<3.7 \mathrm{~m}$ od środka detektora

(3) Miony z ujemnym ładunkiem (wybór ν_{μ})
(9) Cięcie na parametrze PID (Particle IDentification), używanym do selekcji oddziaływań NC i CC

Bliski Detektor: porównanie danych i MC

Wielkości które różnicują oddziaływania CC ν_{μ} i NC

ODRÓŻNIANIE ODDZIAŁYWAŃ CC ν_{μ} i NC

Cięcie na CC $\nu_{\mu}:$ PID >0.85

Efektywności i czystości dla ND

SELEKCJA ODDZIAŁYWAŃ Z WIAZZKI W FD

Oddziaływania w Dalekim Detektorze są selekcjonowane na podstawie czasu ich rejestracji i topologii :

- Czas rejestracji oddziaływań musi być w koincydencji z czasem wiązki NuMI (w $50 \mu s$ oknie)
- Kierunek neutrin musi być zgodny z osią wiązki (kąt toru względem osi wiązki $<50^{\circ}$)

Oczekiwane tho z mionów z promieniowania kosmicznego: < 0.5 przypadków

EKSTRAPOLACJA ND \rightarrow FD

- Dane z Bliskiego Detektora są używane do przewidywania rozkładów energii w Dalekim Detektorze
- Niepewności związane z modelowaniem wiązki i przekrojami czynnymi, wspólne dla ND i FD, istotnie się skracają

- ND widzi wiązkę ν jako źródło rozciągłe, FD - jako punktowe
\leftarrow Funkcja przejścia wiąże ze sobą prawdziwą energię ν w ND z prawdziwą energią w FD

Metoda BEAM MATRIX

Kolejne kroki w metodzie

Błędy systematyczne na Δm_{23}^{2} and $\sin ^{2} 2 \theta_{23}$

- Duże niepewności związane z modelowaniem wiązki i z przekrojami czynnymi, dzięki ekstrapolacji w większości się kasują
- Z pozostałych błędów systematycznych największe są te związane z domieszką przypadków NC i względną normalizacją (niedokładna znajomość wiarygodnego obszaru detektorów (fiducial mass), różnice we względnej efektywności rekonstrukcji w ND i FD)

Błąd systematyczny	Shift in Δm_{23}^{2}	Shift in $\sin ^{2} 2 \theta_{23}$
Normalizacja ND/FD $\pm 4 \%$	0.065	<0.005
Absolutna, hadronowa skala energii $\pm 10 \%$	0.075	<0.005
Tło od NC $\pm 50 \%$	0.010	0.008
Inne systematyczne niepewności	0.007	<0.005
Całkowity błąd systematyczny	0.10	0.008

Wplyw kolejnych cięć na danych z FD

Cięcie	Liczba przypadków
Tor w fiducial volume	847
Dobra jakość danych	830
Czas zgodny z czasem wiązki	828
Dobra jakość wiązki	812
Tor dobrej jakości	811
Ładunek toru $<=0$	672
Parametr PID >0.85	564
Zrekonstruowana $E_{\nu}<200 \mathrm{GeV}$	563

Zaobserwowana vs oczekiwana liczba zdarzeń

Próbka danych	FD Dane	Przewidywanie (bez osc.)	Dane/Przewidywanie (Beam Matrix)
$\nu_{\mu} C C_{\text {like }}$	563	738 ± 30	$0.76(4.4 \sigma)$
$\nu_{\mu} C C_{\text {like }}(<10 \mathrm{GeV})$	310	496 ± 20	$0.62(6.2 \sigma)$
$\nu_{\mu} C C_{\text {like }}(<5 \mathrm{GeV})$	198	350 ± 14	$0.57(6.5 \sigma)$

Widmo energii w FD i krzywa oscylacyjna

Parametry oscylacji z najlepszego dopasowania:

- $\Delta m_{23}^{2}=2.38_{-0.16}^{+0.20} \times 10^{-3} \mathrm{eV}^{2}$
- $\sin ^{2} 2 \theta_{23}=1.00_{-0.08}$

Dozwolony obszar

Hincol Pnimumy

Przewidywania dla θ_{13}

Przewidywania dla θ_{13}

Podsumowanie

- Eksperyment MINOS to jeden z nielicznych obecnie eksperymentów neutrinowych dostarczających nowych, ciekawych danych
- Ciekawa fizyka, nie tylko związana z badaniem akceleratorowych neutrin i nie tylko dotycząca oscylacji neutrin

