Neutrinowy eksperyment MINOS

Katarzyna Grzelak

Zakład Cząstek i Oddziaływań Fundamentalnych IFD UW

12.03.2008

K.Grzelak (UW ZCiOF)

PLAN

- Wprowadzenie
- Wiązka neutrin NuMI
- 3 Eksperyment MINOS
- 4 Oscylacje neutrin akceleratorowych w MINOS'ie

K.Grzelak (UW ZCiOF)

2/!

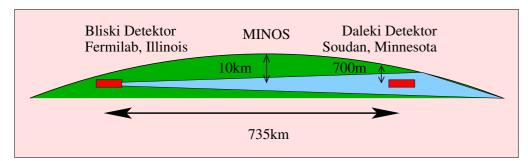
WSTĘP

- MINOS: eksperyment zbudowany w celu potwierdzenia hipotezy oscylacji neutrin i zmierzenia parametrów modelu oscylacji
- Kontrolowana wiązka neutrin z akceleratora
- Pierwsze oddziaływanie neutrina z wiązki w dalekim detektorze:
 7 marzec 2005
- Wyniki dla do tej pory przeanalizowanych danych, odpowiadające 2.5×10^{20} pot (protonów na tarczę)

K.Grzelak (UW ZCiOF)

WPROWADZENIE

Eksperyment MINOS:


27 instytucji, 147 fizyków

Instytucje: Argonne, Arkansas Tech, Athens, Benedictine, Brookhaven, Caltech, Cambridge, Campinas, Fermilab, Harvard, IIT, Indiana, Minnesota, Twin Cities, Minnesota-Duluth, Oxford, Pittsburgh, Rutherford, Sao Paulo, South Carolina, Stanford, Sussex, Texas A&M, Texas-Austin, Tufts, UCL, Uniwersytet Warszawski, William&Mary

K.Grzelak (UW ZCiOF)

WPROWADZENIE

- MINOS: drugi w historii i jedyny obecnie zbierający dane eksperyment z długą bazą
- Bliski Detektor (ND) (1kt) w ośrodku Fermilab pod Chicago, 100m pod powierzchnią ziemi
- Daleki Detektor (FD) (5.4 kt) znajduje się 735km dalej w kopalni Soudan, w Minnesocie, 710m pod powierzchnią ziemi
- ullet Czas przelotu neutrina z Fermilab'u do Soudan: $\sim 2.5 ms$

K.Grzelak (UW ZCiOF)

MACIERZ MIESZANIA DLA NEUTRIN

Trzy zapachy neutrin jako kombinacja trzech stanów własnych masy.

$$\left(egin{array}{c}
u_{
m e} \\

u_{
m \mu} \\

u_{
m au} \end{array}
ight) = \left(egin{array}{ccc}
U_{
m e1} & U_{
m e2} & U_{
m e3} \\
U_{
m \mu1} & U_{
m \mu2} & U_{
m \mu3} \\
U_{
m au1} & U_{
m au2} & U_{
m au3} \end{array}
ight) \left(egin{array}{c}
u_1 \\

u_2 \\

u_3 \end{array}
ight)$$

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

$$egin{aligned} s_{ij} &= \sin heta_{ij} \ c_{ij} &= \cos heta_{ij} \ \delta &
ightarrow ext{faza } ext{famania CP} \end{aligned}$$

MACIERZ MIESZANIA DLA NEUTRIN, cz. 2

Zakładając zachowanie CP ($\delta = 0$):

$$\left(egin{array}{c}
u_{
m e} \\
u_{\mu} \\
u_{ au} \end{array}
ight) =$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{pmatrix}
\begin{pmatrix}
c_{13} & 0 & s_{13} \\
0 & 1 & 0 \\
-s_{13} & 0 & c_{13}
\end{pmatrix}
\begin{pmatrix}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}$$

neutrina atmosferyczne poszukiwane

deficyt neutrin słonecznych

			Eksperymenty
Super-K, K2K	CHOOZ	Homestake, SNO	kamienie milowe
MINOS	MINOS	KamLAND, Borexino	obecne
T2K	T2K reaktorowe		nrzyszła

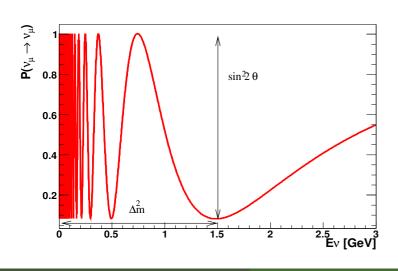
K.Grzelak (UW ZCiOF)

PRAWDOPODOBIEŃSTWO PRZEMIANY $u_{\alpha} ightarrow u_{\beta}$

$$P_{
u_{lpha}
ightarrow
u_{eta}}(L) = \sum_{k} |U_{lpha k}|^2 |U_{eta k}|^2 \ + 2Re \sum_{k>j} U_{lpha k}^* U_{eta k} U_{lpha j} U_{eta j}^* exp[-irac{\Delta m_{kj}^2}{2E_
u} L] \ \Delta m_{kj}^2 \equiv m_k^2 - m_j^2$$

Parametry modelu: 3 kąty mieszania θ_{23} , θ_{13} i θ_{12} , 1 faza δ i dla trzech rodzajów neutrin 2 niezależne różnice mas Δm^2 .

<ロ > ← □


K.Grzelak (UW ZCiOF)

BADANIE ZJAWISKA OSCYLACJI

W EKSPERYMENTACH AKCELERATOROWYCH

obserwacje znikania neutrin mionowych

$$P(
u_{\mu}
ightarrow
u_{\mu})\simeq 1-\sin^22 heta_{23}\sin^2rac{1.27\Delta m_{atm}^2L}{E_{
u}}$$

Jednostki:

$$\Delta m^2 [eV^2]$$

 $E_{\nu} [GeV]$
 $L[km]$

Maksimum oscylacji dla

$$\frac{1.27\Delta m_{atm}^2 L}{E_{\nu}} = \frac{\pi}{2}$$

< ロ > < @ > < ≧ > < ≧ > へ ≥ < の へ

K.Grzelak (UW ZCiOF)

BADANIE ZJAWISKA OSCYLACJI

W EKSPERYMENTACH AKCELERATOROWYCH

obserwacje pojawiania się nowego rodzaju neutrin

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &\simeq \sin^{2}2\theta_{13}\sin^{2}\theta_{23}\sin^{2}\Delta \\ &\mp \alpha\sin2\theta_{13}\sin\delta_{CP}\cos\theta_{13}\sin2\theta_{12}\sin2\theta_{23}\sin^{3}\Delta \\ &+ \alpha\sin2\theta_{13}\cos\delta_{CP}\cos\theta_{13}\sin2\theta_{12}\sin2\theta_{23}\cos\Delta\sin^{2}\Delta \\ &+ \alpha^{2}\cos^{2}\theta_{23}\sin^{2}2\theta_{12}\sin^{2}\Delta \end{split}$$

$$\Delta \equiv rac{\Delta \mathrm{m}_{atm}^2 L}{4 E_{
u}}, \qquad \qquad \alpha \equiv rac{\Delta \mathrm{m}_{sol}^2}{\Delta \mathrm{m}_{atm}^2}$$

Dokładnie mierzy się tylko kombinację parametrów, a nie tylko samo $\sin^2 2\theta_{13}$

K.Grzelak (UW ZCiOF)

Cele eksperymentu MINOS

- Weryfikacja hipotezy oscylacji $\nu_{\mu} \rightarrow \nu_{\tau}$ i precyzyjny pomiar (<10%) parametrów modelu neutrin Δm_{23}^2 and $\sin^2 2\theta_{23}$
- Poszukiwania jeszcze nie zaobserwowanych przy tej skali mas, oscylacji $\nu_{\mu} \rightarrow \nu_{e}$ (poszukiwanie θ_{13})
- Poszukiwanie/wykluczenie egzotycznych hipotez: sterylne neutrina,rozpad neutrina
- Pierwszy, bezpośredni pomiar oscylacji ν vs $\overline{\nu}$ (symetria CPT)
- ullet Badanie oddziaływań u, wyznaczanie przekrojów czynnych przy użyciu danych z bliskiego detektora
- Badanie mionów z promieniowania kosmicznego

(ロ▶ (団▶ (目) (目) (目) (り)

K.Grzelak (UW ZCiOF)

Stan analiz eksperymentu MINOS

Neutrina akceleratorowe

- Pierwsze oddziaływanie w dalekim detektorze 7 marca 2005
- Pierwsze opublikowane wyniki (zanikanie ν_{μ} : w oparciu o 1.27 × 10²⁰pot (Run I) (215 oddziaływań ν_{μ})
- Do tej pory przeanalizowano 2.5 \times 10²⁰pot (563 oddziaływań ν_{μ})
- Do chwili obecnej zebrano około 3.88 × 10²⁰pot (Run II + Run III)
- Prace nad analizą $\nu_{\mu} \rightarrow \nu_{e}$, NC, opracowaniem danych z ND

K.Grzelak (UW ZCiOF)

Stan analiz eksperymentu MINOS

Neutrina atmosferyczne

- Dane zbierane od lipca 2003
- Opublikowane wyniki:
 - oddziaływania z wierzchołkiem wewnątrz detektora, rozdzielone ν_{μ} i $\overline{\nu_{\mu}}$, po selekcji \sim 0.25 oddziaływania na dzień
 - miony z oddziaływań neutrin (poruszające się ku powierzchni ziemi i poziome), rozdzielone ν_{μ} i $\overline{\nu_{\mu}}$, po selekcji \sim 0.15 oddziaływania na dzień
 - Prace nad połączeniem obu analiz

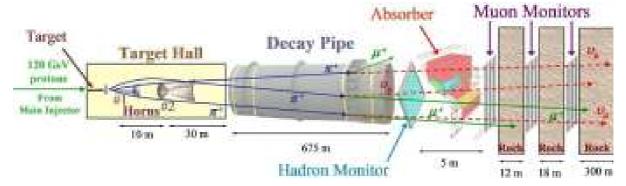
K.Grzelak (UW ZCiOF)

Stan analiz eksperymentu MINOS

Miony z promieniowania kosmicznego

- pomiar N_{μ^+}/N_{μ^-}
- daleki detektor (FD): rozróżnianie ładunku mionu dla p $< 250 \, GeV/c$, częstość rejestracji mionów $\sim 0.25 \, Hz$
- bliski detektor (ND): miony o średniej energii 8 GeV, częstość rejestracji mionów \sim 10 Hz

K.Grzelak (UW ZCiOF)

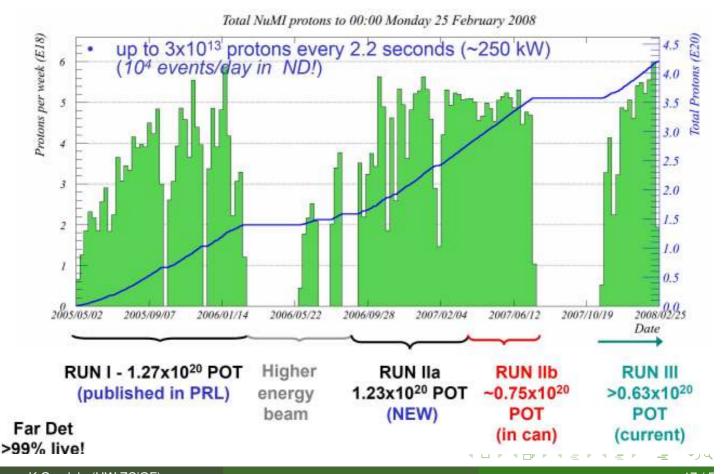

WIĄZKA NEUTRIN NuMI

□ > < □ > < □ > < □ > < □ > < □ >

K.Grzelak (UW ZCiOF)

WIĄZKA NEUTRIN NuMI

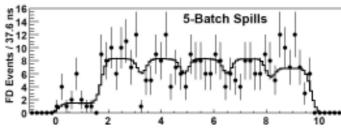
 Protony o energii 120 GeV z akceleratora Main Injector w Fermilabie

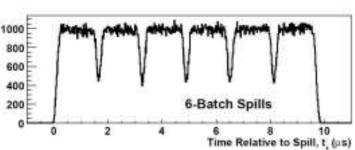


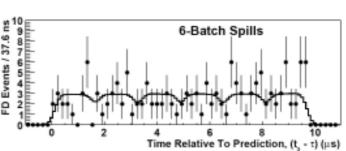
K.Grzelak (UW ZCiOF)

WIĄZKA PIERWOTNA - PROTONY

LICZBA DOSTARCZONYCH PROTONÓW

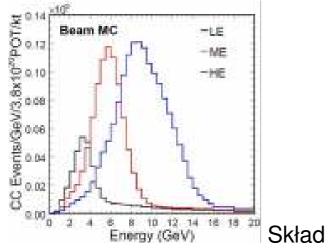



K.Grzelak (UW ZCiOF)


STRUKTURA WIĄŻKI PIERWOTNEJ WIDZIANA W ND i FD

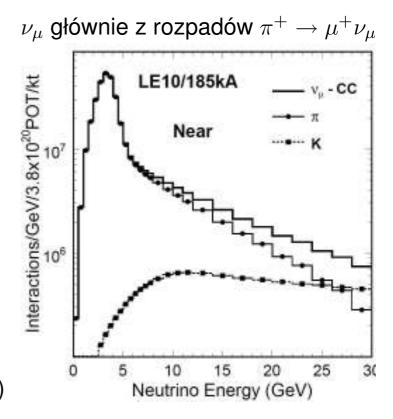
- Pierwotna wiązka protonów: wysyłana w 5-6 paczkach, w czasie 10 μ s
- 2.4×10^{13} protonów/puls co 2.2s

Bliski Detektor


Daleki Detektor

₹ • 9 q

K.Grzelak (UW ZCiOF)

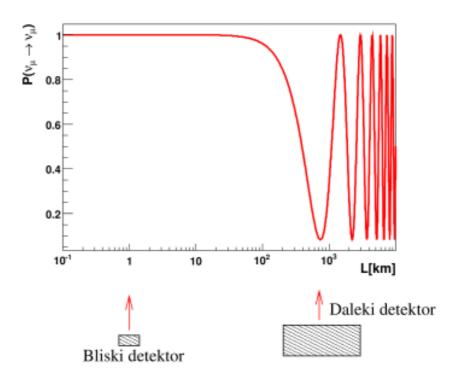

WIĄZKA WTÓRNA - NEUTRINA

Unikalną cechą wiązki NuMI jest możliwość zmiany widma neutrin poprzez zmianę położenia tarczy.

wiązki neutrin (LE-10): 98.5 %

 $(\nu_{\mu}+\overline{
u_{\mu}})$ (6.5 % $\overline{
u_{\mu}}$),1.5 % $(\nu_{e}+\overline{
u_{e}})$

K.Grzelak (UW ZCiOF)


EKSPERYMENT MINOS

<□ > <□ > <□ > <□ > < □ > < □ > < □ > < □ >

K.Grzelak (UW ZCiOF)

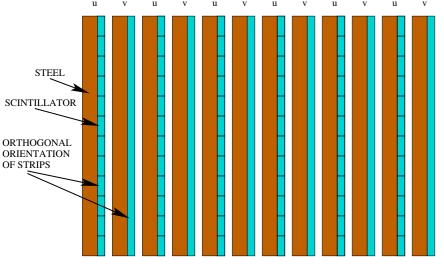
POŁOŻENIE DETEKTORÓW

- Daleki Detektor (ND) → poszukiwanie oscylacji
- Bliski Detektor (FD) → widmo energii niezakłócone przez oscylacje

K.Grzelak (UW ZCiOF)

MINOS: POŁOŻENIE DETEKTORÓW

DALEKI DETEKTOR: KOPALNIA SOUDAN

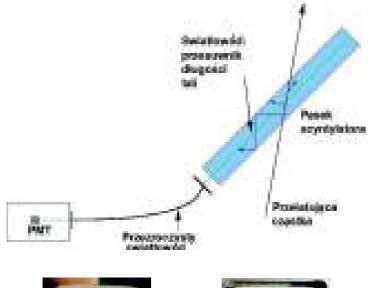

◆□▶◆□▶◆■▶◆■▶ ● り

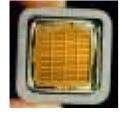
K.Grzelak (UW ZCiOF)

MINOS: BLISKI I DALEKI DETEKTOR

Bliski i Daleki Detektor eksperymentu MINOS mają tak bardzo jak to możliwe podobną budowę:

- naprzemiennie: stalowe płyty (2.54 cm) i paski scyntylatora (1cm)
- paski w co drugiej płaszczyźnie są do siebie prostopadłe





<ロ > < @ > < ≣ > < ≣ > の Q

K.Grzelak (UW ZCiOF)

MINOS: BLISKI I DALEKI DETEKTOR

<□ > <□ > <□ > <□ > < □ > < □ > < □ > < □ >

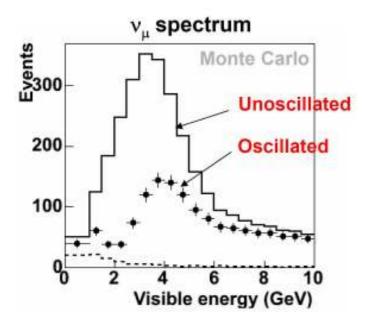
K.Grzelak (UW ZCiOF)

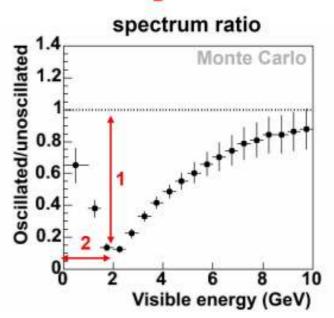
MINOS: BLISKI I DALEKI DETEKTOR

- Bliski Detektor: 1kt, 282 płaszczyzny, 3.8m \times 4.8m \times 15m 100m pod powierzchnią ziemi
- Daleki Detektor: 5.4kt, 484 płaszczyzny , 8m \times 8m \times 30m 710m pod powierzchnią ziemi
- B ~ 1.3 T w obu detektorach

K.Grzelak (UW ZCiOF)

OSCYLACJE NEUTRIN AKCELERATOROWYCH w MINOS'ie

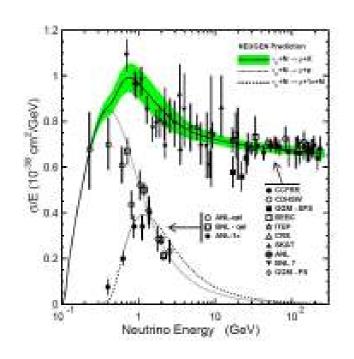

□ > < □ > < □ > < □ > < □ > < □ >

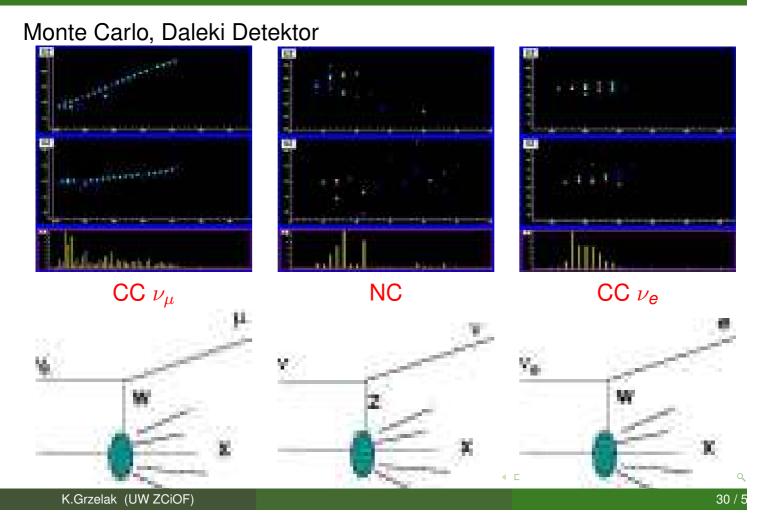

K.Grzelak (UW ZCiOF)

PRZYKŁAD ANALIZY ZNIKANIA u_{μ}

Symulacja Monte Carlo

$$P(\nu_{\mu} \to \nu_{\mu}) = 1 - \sin^2 2\theta \sin^2 (1.267 \Delta m^2 L / E)$$

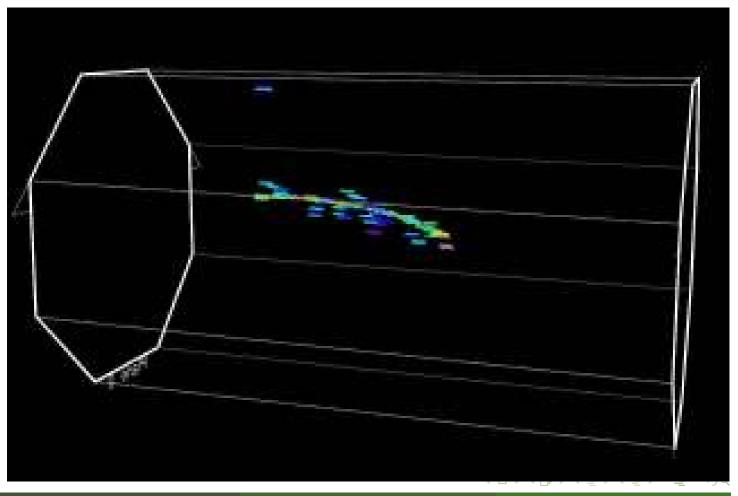



K.Grzelak (UW ZCiOF)

TYPY ODDZIAŁYWAŃ NEUTRIN w MINOS'ie

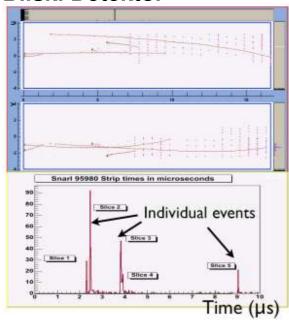
- \bullet $\nu_{\mu}N \rightarrow \mu X$
- Sygnaturą oddziaływania CC ν_{μ} jest obecność długiego toru mionu
- \bullet $E_{
 u} = E_{shower} + E_{\mu}$
- Rozdzielczość energetyczna $55\%\sqrt(E)$
- Dokładność pomiaru pędu mionu (6% z zasięgu, 11% z krzywizny)

TOPOLOGIE PRZYPADKÓW Z WIĄZKI NuMI

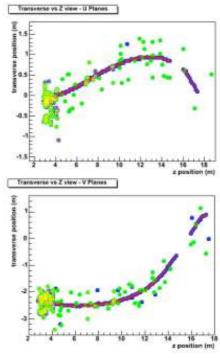


REKONSTRUKCJA w MINOS'ie

K.Grzelak (UW ZCiOF) 31 / 5


REKONSTRUKCJA w MINOS'ie

K.Grzelak (UW ZCiOF) 32 / 5


TYPOWE ODDZIAŁYWANIA - DANE

Bliski Detektor

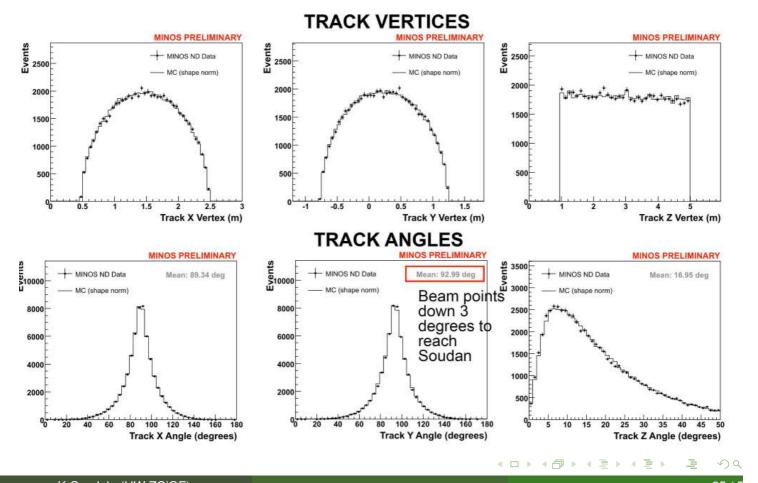
Kilka przypadków rejestrowanych w czasie jednego pulsu wiązki. Odróżniane dzięki informacji czasowej i przestrzennej

Daleki Detektor

Częstość oddziaływań w FD znacznie niższa ($\sim 10^-6\times$ częstość w ND)

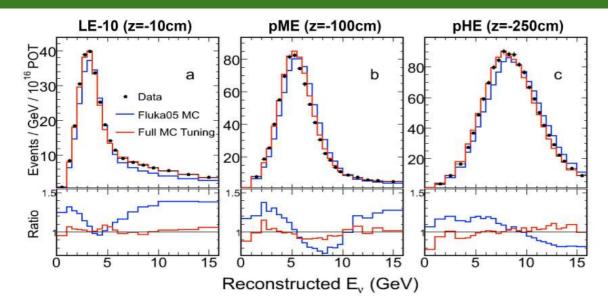
99

K.Grzelak (UW ZCiOF) 33 / 5


BLIND ANALYSIS

- Zabezpieczenie się przed nieumyślnym naginaniem wyników do oczekiwanego
- Wszystkie dane z Bliskiego Detektora są dostępne
- Część danych z Dalekiego Detektora ukryta (zgodnie z nieznaną funkcją długości przypadku i energii zdeponowanej w detektorze)
- Przed otwarciem puszki wszystkie procedury dotyczące analizy danych muszą być zamrożone
- Po otwarciu puszki dla pierwszej analizy, część danych z FD na nowo ukryta przy użyciu nowej funkcji

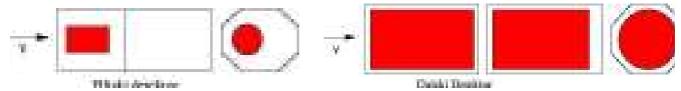
<ロ > ∢回 > ∢回 > ∢ 回 > √ □ > √ □ >


K.Grzelak (UW ZCiOF)

BLISKI DETEKTOR: PORÓWNANIE DANE/MC

K.Grzelak (UW ZCiOF) 35 /

WIDMA ENERGII W BLISKIM DETEKTORZE

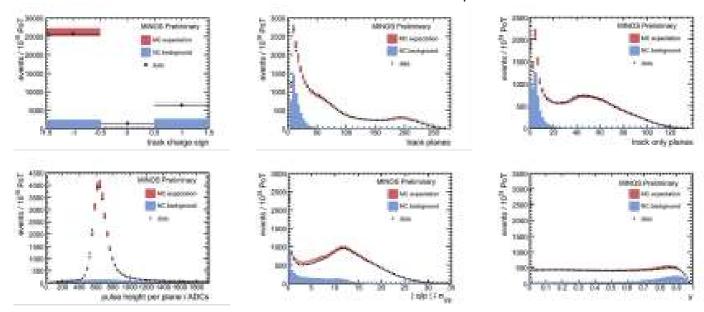


- Dane były zbierane przy 7 różnych konfiguracjach wiązki (różne pozycje tarczy i różne prądy w rogach magnetycznych)

K.Grzelak (UW ZCiOF)

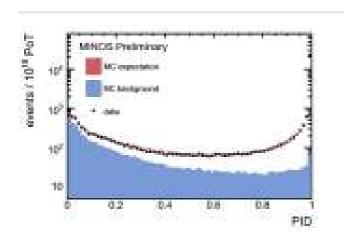
SELEKCJA PRZYPADKÓW CC ν_{μ}

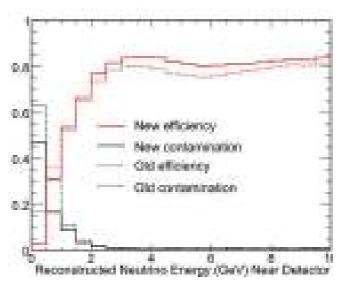
- Co najmniej jeden dobrze zrekonstruowany tor (kandydat na mion)
- Wierzchołek oddziaływania w wiarygodnym obszarze detektora (fiducial volume):
 - ND: 1m < z < 5m, R < 1m od środka wiązki
 - FD: z> 20cm od pierwszej płaszczyzny, z> 2m od ostatniej płaszczyzny , R< 3.7m od środka detektora


- lacktriangle Miony z ujemnym ładunkiem (wybór u_{μ})
- Oięcie na parametrze PID (Particle IDentification), używanym do selekcji oddziaływań NC i CC

K.Grzelak (UW ZCiOF)

Bliski Detektor: porównanie danych i MC


Wielkości które różnicują oddziaływania CC ν_{μ} i NC


◆□▶ ◆□▶ ◆ 壹 ▶ ◆ 壹 ◆ 夕 ♀

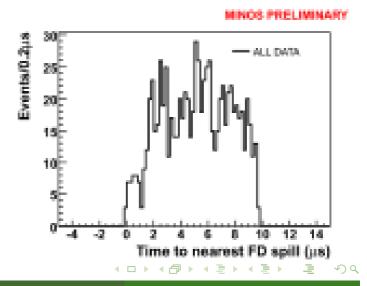
K.Grzelak (UW ZCiOF)

ODRÓŻNIANIE ODDZIAŁYWAŃ CC ν_{μ} i NC

Cięcie na CC ν_{μ} : PID>0.85

Efektywności i czystości dla ND

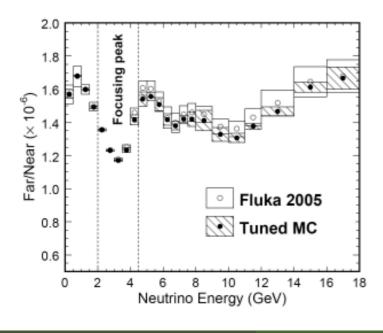
◆□▶◆□▶◆■▶◆■▶ ● ∽♀


K.Grzelak (UW ZCiOF)

SELEKCJA ODDZIAŁYWAŃ Z WIĄZKI W FD

Oddziaływania w Dalekim Detektorze są selekcjonowane na podstawie czasu ich rejestracji i topologii :

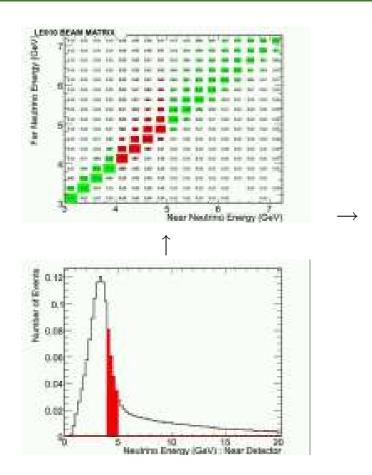
- Czas rejestracji oddziaływań musi być w koincydencji z czasem wiązki NuMI (w 50 μs oknie)
- Kierunek neutrin musi być zgodny z osią wiązki (kąt toru względem osi wiązki < 50°)

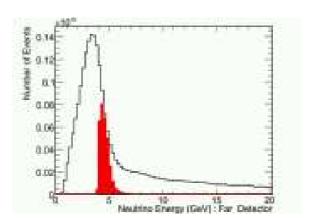

Oczekiwane tło z mionów z promieniowania kosmicznego: < 0.5 przypadków

K.Grzelak (UW ZCiOF)

EKSTRAPOLACJA ND → FD

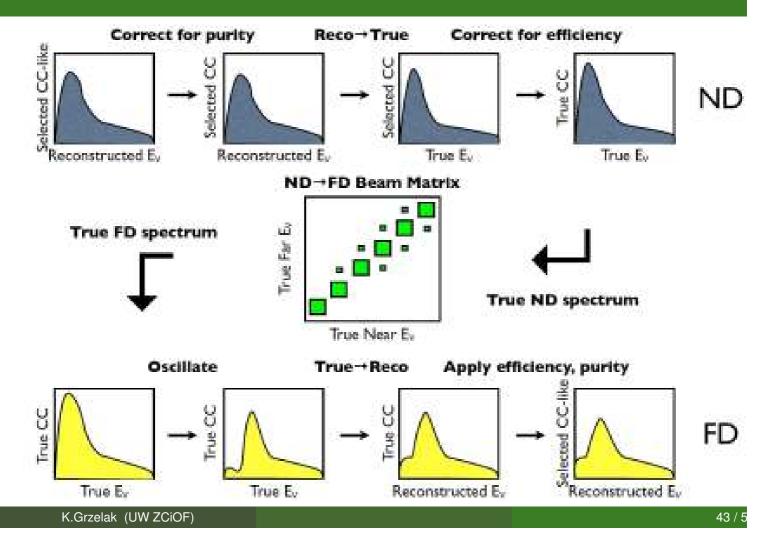
- Dane z Bliskiego Detektora są używane do przewidywania rozkładów energii w Dalekim Detektorze
- Niepewności związane z modelowaniem wiązki i przekrojami czynnymi, wspólne dla ND i FD, istotnie się skracają




- ND widzi wiązkę ν jako źródło rozciągłe,
 - FD jako punktowe
- \leftarrow Funkcja przejścia wiąże ze sobą prawdziwą energię ν w ND z prawdziwą energią w FD

(ロ▶ (団▶ (目▶ (目)) (目) り()

K.Grzelak (UW ZCiOF)


Metoda BEAM MATRIX

K.Grzelak (UW ZCiOF)

Kolejne kroki w metodzie BEAM MATRIX

Błędy systematyczne na Δm_{23}^2 and $\sin^2 2\theta_{23}$

- Duże niepewności związane z modelowaniem wiązki i z przekrojami czynnymi, dzięki ekstrapolacji w większości się kasują
- Z pozostałych błędów systematycznych największe są te związane z domieszką przypadków NC i względną normalizacją (niedokładna znajomość wiarygodnego obszaru detektorów (fiducial mass), różnice we względnej efektywności rekonstrukcji w ND i FD)

Błąd systematyczny	Shift in	Shift in
	Δm^2_{23}	$\sin^2 2\theta_{23}$
Normalizacja ND/FD ±4 %	0.065	< 0.005
Absolutna, hadronowa skala energii \pm 10 %	0.075	< 0.005
Tło od NC \pm 50 %	0.010	0.008
Inne systematyczne niepewności	0.007	< 0.005
Całkowity błąd systematyczny	0.10	0.008

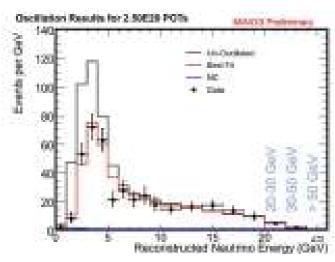
K.Grzelak (UW ZCiOF) 44 /

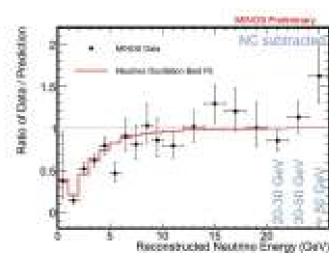
Wpływ kolejnych cięć na danych z FD

Cięcie	Liczba przypadków	
Tor w fiducial volume	847	
Dobra jakość danych	830	
Czas zgodny z czasem wiązki	828	
Dobra jakość wiązki	812	
Tor dobrej jakości	811	
Ładunek toru <=0	672	
Parametr PID >0.85	564	
Zrekonstruowana $E_{\nu} < 200 GeV$	563	

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● めの

K.Grzelak (UW ZCiOF) 45 /

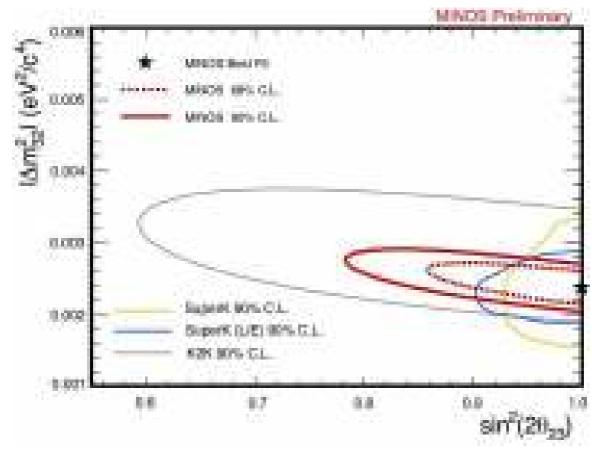

Zaobserwowana vs oczekiwana liczba zdarzeń


Próbka danych	FD	Przewidywanie	Dane/Przewidywanie	
	Dane	(bez osc.)	(Beam Matrix)	
$ u_{\mu} CC_{like}$	563	738 ± 30	0.76 (4.4 σ)	
$ u_{\mu} \textit{CC}_{\textit{like}} \ (< 10 \ \text{GeV}) $	310	496 ± 20	0.62 (6.2 σ)	
$ u_{\mu} CC_{\textit{like}} \ (< 5 \ \text{GeV}) $	198	350 ± 14	0.57 (6.5 σ)	

◆□▶ ◆□▶ ◆ ■ ▶ ◆ ■ り ♀

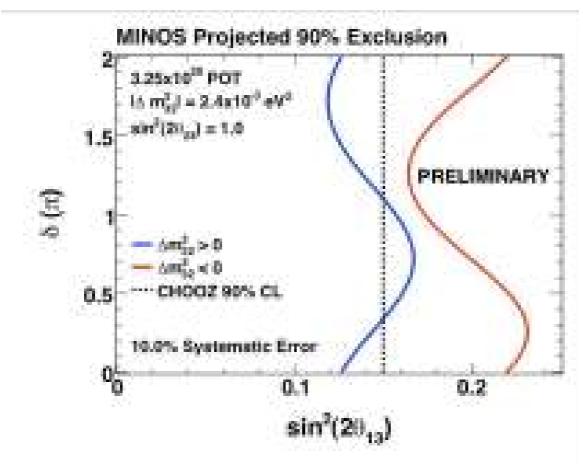
K.Grzelak (UW ZCiOF)

Widmo energii w FD i krzywa oscylacyjna

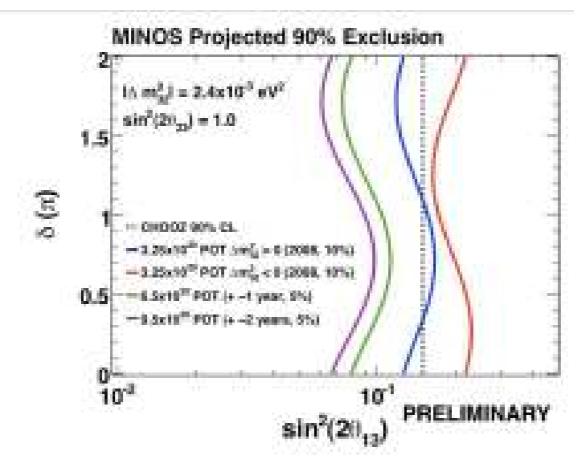

Parametry oscylacji z najlepszego dopasowania:

- $\Delta m_{23}^2 = 2.38^{+0.20}_{-0.16} \times 10^{-3} eV^2$
- $\sin^2 2\theta_{23} = 1.00_{-0.08}$

K.Grzelak (UW ZCiOF)


Dozwolony obszar

4□ > 4□ > 4 = > 4 = > 9


K.Grzelak (UW ZCiOF)

Przewidywania dla θ_{13}

K.Grzelak (UW ZCiOF)

Przewidywania dla θ_{13}

◆□ → ◆□ → ◆ = → ○

K.Grzelak (UW ZCiOF)

Podsumowanie

- Eksperyment MINOS to jeden z nielicznych obecnie eksperymentów neutrinowych dostarczających nowych, ciekawych danych
- Ciekawa fizyka, nie tylko związana z badaniem akceleratorowych neutrin i nie tylko dotycząca oscylacji neutrin

K.Grzelak (UW ZCiOF)