Calculational methods

Li and Be⁺ isotope shift

Problems

Precyzyjna spektroskopia isotopów Be⁺ i jądrowe promienie ładunkowe

Krzysztof Pachucki

Universytet Warszawski

14 styczeń 2009, IFD Uniwersytet Warszawski

wsparte przez NIST Precision measurement Grant 60NANB7D6153

Promień ładunkowy jądra	Calculational methods	Li and Be ⁺ isotope shift	Problems
Podstawy			

- Rozwój zaawansowanych metod teoretycznych opartych na elektrodynamice kwantowej pozwala na precyzyjne wyznaczenie poziomów energetycznych
- atomy: H, He, Li i Be⁺
- skończona masa jądra \rightarrow przesunięcie izotopowe
- magnetyczny moment dipolowy i elektryczny kwadrupolowy → struktura nadsubtelna
- widoczny jest wpływ struktury jądra na widma atomowe: promień ładunkowy, polaryzowalność jądra, rozkład momentu magnetycznego wewnątrz jądra

Promień	ładunkowy	jądra

Calculational methods

Li and Be⁺ isotope shift

- Wpływ skończonych rozmiarów jądra na widma atomowe
- Poprawki relatywistyczne i QED
- Metody obliczeniowe dla atomów (ionów) 3-elektronowych
- Przesunięcie izotopowe w Be⁺ i promienie ładunkowe

Calculational methods

Li and Be⁺ isotope shift

Problems

Średni kwadratowy promień ładunkowy jądra r_{ch}

$$\begin{array}{ll} \langle r_{\rm ch}^2 \rangle &=& \int d^3 r \, r^2 \, \rho(r) \\ \delta E &=& \frac{2 \, \pi}{3} \, Z \, \alpha \left\langle \sum_a \, \delta^3(r_a) \right\rangle \langle r_{\rm ch}^2 \rangle \\ &=& C \, \langle r_{\rm ch}^2 \rangle \end{array}$$

w przybliżeniu stanowi to 10⁻⁴ przesunięcia izotopowego

$$\nu_{\rm exp} - \nu_{\rm the} = C \,\delta \,r_{\rm ch}^2$$

Calculational methods

Li and Be⁺ isotope shift

Problems

mathematical formalism

$$E(\alpha) = E^{(2)} + E^{(4)} + E^{(5)} + E^{(6)} + E^{(7)} + \cdots$$

 $E^{(2)}$ is a nonrelativistic ground state energy *E* corresponding to Schrödinger *H*

$$H = \sum_{a} \frac{\vec{p}_a^2}{2m} - \frac{Z\alpha}{r_a} + \sum_{a>b} \frac{\alpha}{r_{ab}} + \frac{\vec{p}_N^2}{2m_N}$$

 $E^{(4)}$ is the leading relativistic correction

$$E^{(4)} = \langle \phi | H^{(4)} | \phi \rangle$$

with $H^{(4)}$ being an effective Hamiltonian

Calculational methods

Li and Be⁺ isotope shift

Problems

Leading relativistic corrections

$$\begin{split} H^{(4)} &= \sum_{a} \left\{ -\frac{\vec{p}_{a}}{8 \, m^{3}} + \frac{\pi \, Z \, \alpha}{2 \, m^{2}} \, \delta^{3}(r_{a}) + \frac{Z \, \alpha}{4 \, m^{2}} \, \vec{\sigma}_{a} \cdot \frac{\vec{r}_{a}}{r_{a}^{3}} \times \vec{p}_{a} \right\} \\ &+ \sum_{a > b} \sum_{b} \left\{ -\frac{\pi \, \alpha}{m^{2}} \, \delta^{3}(r_{ab}) - \frac{\alpha}{2 \, m^{2}} \, p_{a}^{i} \left(\frac{\delta^{ij}}{r_{ab}} + \frac{r_{ab}^{i} r_{ab}^{j}}{r_{ab}^{3}} \right) p_{b}^{j} \right. \\ &- \frac{2 \, \pi \, \alpha}{3 \, m^{2}} \, \vec{\sigma}_{a} \cdot \vec{\sigma}_{b} \, \delta^{3}(r_{ab}) + \frac{\alpha}{4 \, m^{2}} \, \frac{\sigma_{a}^{i} \, \sigma_{b}^{j}}{r_{ab}^{3}} \left(\delta^{ij} - 3 \, \frac{r_{ab}^{i} r_{ab}^{j}}{r_{ab}^{2}} \right) + \frac{\alpha}{4 \, m^{2}} \, r_{ab}^{3} \\ &\times \left[2 \left(\vec{\sigma}_{a} \cdot \vec{r}_{ab} \times \vec{p}_{b} - \vec{\sigma}_{b} \cdot \vec{r}_{ab} \times \vec{p}_{a} \right) + \left(\vec{\sigma}_{b} \cdot \vec{r}_{ab} \times \vec{p}_{b} - \vec{\sigma}_{a} \cdot \vec{r}_{ab} \times \vec{p}_{a} \right) \right] \right\} \\ &+ \sum_{a} \left\{ \frac{Z \, \alpha}{2 \, m \, m_{N}} \, p_{a}^{i} \left(\frac{\delta^{ij}}{r_{a}} + \frac{r_{a}^{i} r_{a}^{i}}{r_{a}^{3}} \right) p_{N}^{i} - \frac{Z \, \alpha}{2 \, r_{a}^{3}} \, \vec{\sigma}_{a} \cdot \vec{r}_{a} \times \vec{p}_{N} \right\} \end{split}$$

Calculational methods

Li and Be⁺ isotope shift

Problems

Leading QED corrections:

$$\begin{split} E^{(5)} &= -\frac{4Z\alpha^2}{3} \left(\frac{1}{m} + \frac{Z}{M}\right)^2 \left\langle \sum_a \delta^3(r_a) \right\rangle \ln k_0 + \sum_a \langle H_{aN}^{(5)} \rangle + \sum_{a > b, b} \langle H_{ab}^{(5)} \rangle + E_{\text{pol}}, \\ H_{aN}^{(5)} &= \frac{Z\alpha^2}{2\pi m^2 r_a^3} \left[\vec{s}_a \cdot \vec{r}_a \times \vec{p}_a - \frac{m}{M} \vec{s}_a \cdot \vec{r}_a \times \vec{p}_N \right] + \left[\frac{19}{30} + \ln(\alpha^{-2}) \right] \frac{4\alpha^2 Z}{3m^2} \delta^3(r_a) \\ &+ \left[\frac{62}{3} + \ln(\alpha^{-2}) \right] \frac{(Z\alpha)^2}{3mM} \delta^3(r_a) - \frac{7}{6\pi} \frac{m^2}{M} (Z\alpha)^5 P \left[\frac{1}{(m\alpha r_a)^3} \right] \\ &+ \frac{4}{3} \frac{Z^3\alpha^2}{M^2} \ln \left(\frac{M}{m\alpha^2} \right) \delta^3(r_a), \\ H_{ab}^{(5)} &= \frac{\alpha^2}{\pi m^2} \left[\frac{s_a^i s_b^j}{r_{ab}^3} \left(\delta^{ij} - 3 \frac{r_{ab}^i r_{ab}^j}{r_{ab}^2} \right) - \frac{1}{2r_{ab}^3} (\vec{s}_a + \vec{s}_b) \cdot \vec{r}_{ab} \times (\vec{p}_a - \vec{p}_b) \right] \\ &+ \frac{\alpha^2}{m^2} \left[\frac{164}{15} + \frac{14}{3} \ln \alpha \right] \delta^3(r_{ab}) - \frac{7}{6\pi} m \alpha^5 P \left[\frac{1}{(m\alpha r_{ab})^3} \right], \end{split}$$

Calculational methods

Li and Be⁺ isotope shift

Problems

Li: nonrelativistic wave function

Hylleraas basis set:

$$\psi = \mathcal{A}[\phi(\vec{r}_1, \vec{r}_2, \vec{r}_3) \chi]$$

$$\phi(\vec{r}_1, \vec{r}_2, \vec{r}_3) = \exp(-\alpha_1 r_1 - \alpha_2 r_2 - \alpha_3 r_3) r_{23}^{n_1} r_{31}^{n_2} r_{12}^{n_3} r_1^{n_4} r_2^{n_5} r_3^{n_6}$$

$$\chi = [\alpha(1) \beta(2) - \beta(1) \alpha(2)] \alpha(3)$$

- with many $\sim 10^4 \, \phi' s$
- correct analytic properties

Promień	ładunkowy	jądra

Calculational methods ○● Li and Be⁺ isotope shift

Problems

Li: matrix elements

Matrix elements of the Hamiltonian

$$\begin{array}{ll} \langle \psi | H_0 | \psi' \rangle &=& \langle 2 \, \phi(1,2,3) + 2 \, \phi(2,1,3) - \phi(3,1,2) - \phi(2,3,1) \\ &- \phi(1,3,2) - \phi(3,2,1) | H_0 \, | \phi'(1,2,3) \rangle / 6 \, . \end{array}$$

are expressed in terms of Hylleraas integral

$$f = f(n_1, n_2, n_3, n_4, n_5, n_6)$$

= $\int \frac{d^3 r_1}{4 \pi} \int \frac{d^3 r_2}{4 \pi} \int \frac{d^3 r_3}{4 \pi} e^{-w_1 r_1 - w_2 r_2 - w_3 r_3}$
 $\times r_{23}^{n_1 - 1} r_{31}^{n_2 - 1} r_{12}^{n_3 - 1} r_1^{n_4 - 1} r_2^{n_5 - 1} r_3^{n_6 - 1}$

Promień	ładunkowy	jądra

Calculational methods

Li and Be⁺ isotope shift •000

Li and Be⁺: contributions to the isotope shift, MHz

correction	$^{11-7}$ Li(3 $S_{1/2}$ – 2 $S_{1/2}$)	$^{11-9}$ Be(2 $P_{1/2}$ – 2 $S_{1/2}$)
$\Delta \nu^{(2,1)}$	25 104.520 2(1)	31 568.577 3(8)
$\Delta u^{(2,2)}$	-2.9679	0.7657(2)
$\Delta u^{(4,1)}$	0.0378(4)	-10.0350(2)
$\Delta \nu^{(5,1)}$	-0.1064(15)	0.8777(36)
$\Delta u^{(6,1)}$	-0.020(5)	-0.092(23)
$\Delta u_{ m pol}$	0.039(4)	0.208(21)
$\Delta u_{ m the}$	25 101.5028(64)(27)	31 560.302(31)(12)
$\Delta \nu_{\rm the}$ [Drake]	25 101.470(5)	31 560.01(6)

Calculational methods

Li and Be⁺ isotope shift $0 \bullet 00$

Problems

¹¹Be: Nuclear polarizability

- ¹¹Be with the one halo neutron
- its size is close to ⁹²U
- nucleus polarized by the electric field of electrons what significantly shifts atomic energy levels

$$E_{\text{pol}} = -m \alpha^4 \left\langle \sum_{a} \delta^3(r_a) \right\rangle (m^3 \tilde{\alpha}_{\text{pol}})$$
$$\tilde{\alpha}_{\text{pol}} = \frac{8 \pi \alpha}{9} \int_{E_T} \frac{dE}{E} \frac{1}{e^2} \frac{dB(E1)}{dE} \left[\frac{19}{6} + 5 \ln\left(\frac{2E}{m}\right) \right]$$

Promień ładunkowy jądra	Calculational methods	Li and Be ⁺ isotope shift ००●०	Problems
Be: charge radii			

Measurement by Nörtershäuser et al. at ISOLDE in CERN (2008), $r_{\rm ch}({}^{9}{\rm Be}) = 2.519(12)$ fm

isotope	$ u_{exp}$ [MHz]	$\nu_{\mathrm{the}}[MHz]$	<i>r</i> _{ch} [fm]
⁷ Be ⁺	-49 236.81(88)	-49225.736(35)(9)	2.645(14)
¹⁰ Be ⁺	17 323.8(13)	17310.437(13)(11)	2.358(16)
¹¹ Be ⁺	31 564.96(93)	31 560.302(31)(12)	2.464(16)

$$E_{\rm fs} = \frac{2\pi}{3} Z \alpha^4 m^3 r_{\rm ch}^2 \langle \sum_a \delta^3(r_a) \rangle = \nu_{\rm exp} - \nu_{\rm the}$$

Calculational methods

Li and Be⁺ isotope shift

Problems

Plot of Be charge radii from Nörtershäuser at al.

Promień	ładunkowy	jądra

Calculational methods

Li and Be⁺ isotope shift

Problems

- charge radii of reference nuclei are not very accurate
- precision of theoretical predictions is not sufficient for direct determination of charge radii
- development of computational methods for the 4-,5-electron systems
- finding the appropriate atomic transitions in B or B⁺