

Justyna Marganiec

Zakład Fizyki Jądrowej, Uniwersytet Łódzki justmarg@uni.lodz.pl

Warszawa, 27 luty 2008

Plan prezentacji

- 1. Pochodzenie pierwiastków chemicznych;
- 2. Nukleosynteza pierwiastków cięższych od Fe:
 - proces s,
 - proces r,
 - proces *p*;
- 3. Motywacja;
- 4. Pomiary przekrojów czynnych:
 - metoda aktywacji,
 - układ pomiarowy,
 - próbki,
 - pomiary aktywności,
 - analiza danych;
- 5. Wyniki;
- 6. Podsumowanie;
- 7. Przewidywane pomiary.

Pochodzenie pierwiastków chemicznych

Nukleosynteza pierwiastków cięższych od Fe **Proces** s – proces powolnego (slow) wychwytu neutronu

"słaba" składowa

M>10 M A< 88 $n_{\rm n} \sim 10^6 \, {\rm n/cm^3}$ $T \sim 3 - 3 \cdot 5 \cdot 10^8 \text{ K}$ 22 Ne(α ,n) 25 Mg

palenie He w jądrze i palenie C w powłoce $n_n \sim 10^{11} - 10^{12} n/cm^3$ $T \sim 10^9 \text{ K}$ 22 Ne(α ,n) 25 Mg $^{12}C(^{12}C,n)^{23}Mg$

"silna" składowa gwiazdy TP-AGB o małym Z ²⁰⁸Pb i ²⁰⁹Bi

"główna" składowa

 $1.2 M_{o} < M < 4M_{o}$ (gwiazdy TP-AGB) 88<A<208 palenie H i błyski helowe $n_n \sim 10^7 \text{ n/cm}^3$ $n_n \sim 10^{11} \text{ n/cm}^3$ $T \sim 3.10^8 \text{ K}$ $T \sim 10^8 \text{ K}$ $^{13}C(\alpha,n)^{16}O$ 22 Ne(α ,n) 25 Mg

Nukleosynteza pierwiastków cięższych od Fe *Proces r* – proces szybkiego (rapid) wychwytu neutronu

$$\begin{array}{l} t_{\beta} > t_n \\ n_n \sim 10^{20} - 10^{30} \text{ n/cm}^3 \\ t_n \sim 1 - 10 \text{ s} \end{array}$$

 $T \sim 10^9 - 7 \cdot 10^9 \text{ K}$

<u>miejsce:</u> wybuch SNII lub podczas zderzenia się gwiazd neutronowych ?

Nukleosynteza pierwiastków cięższych od Fe *Proces p* (proces *γ*)

32 stabilne, protonowo-nadmiarowe izotopy pomiędzy ⁷⁴Se i ¹⁹⁶Hg (osłonięte przez ścieżki procesu *s* lub *r*)

Hg	Hg	Hg																		
178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198
Au	Au	Au																		
177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197
Pt	Pt	Pt																		
176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196
lr	lr	lr																		
175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195
Os	Os	Os																		
174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194
Re	Re	Re																		
173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193
W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192
Та 171	Та 172	Та 173	Та 174	Та 175	Та 176	Та 177	Та 178	Та 179	Та 180	Та 181	Та 182	Та 183	Та 184	Та 185	Та 186	Та 187	Та 188	Та 189		
Hf 170	Hf 171	Hf 172	Hf 173	Hf 174	Hf 175	Hf 176	Hf 177	Hf 178	Hf 179	Hf 180	Hf 181	Hf 182	Hf 183	Hf 184	Hf 185	Hf 186	Hf 187	Hf 188		
Lu 169	Lu 170	Lu 171	Lu 172	Lu 173	Lu 174	Lu 175	Lu 176	Lu 177	Lu 178	Lu 179	Lu 180	Lu 181	Lu 182	Lu 183	Lu 184					
Yb 168	Yb 169	Yb 170	Yb 171	Yb 172	Yb 173	Yb 174	Yb 175	Yb 176	Yb 177	Yb 178	Yb 179	Yb 180				_				

Nukleosynteza pierwiastków cięższych od Fe *Proces p* (proces *γ*)

- ▷ proces *p* − sekwencje reakcji fotodezintegracji i rozpadów β⁺ → (γ,n), (γ,p), (γ,α) reakcje na istniejących jądrach-zarodziach powstałych w procesach *s* i *r*
- > rozpowszechnienie 10 100 x mniejsze niż jąder powstałych w procesie s i r
- \succ miejsce \rightarrow wybuchowe spalanie w Supernowej typu II ?
- proces rp system binarny
 (gwiazda neutronowa Czerwony Olbrzym)
- \succ neutrony w procesie p
 - reakcje (n, γ) konkurują z reakcjami (γ, n)
 - wychwyty neutronów odgrywają rolę jako reakcje "freeze-out"

Isotope	El. Abund. %	Year	(<i>n, j</i>) MACS at 30 keV	Uncert. %
Se-74	0.89	2004	271 ± 15	5.5
Kr-78	0.35	1991	312 ± 26	8.3
Sr-84	0.56	2004	300 ± 17	5.7
Mo-92	14.84	1978	70 ± 10	14.3
Mo-94	9.25	1972, 1978	102 ± 20	19.6
Ru-96	5.52	2002	207 ± 8	3.9
Ru-98	1.88		173 ± 36	20.8
Pd-102	1.02	2005	370 ± 20	5.4
Cd-106	1.25	1998	302 ± 24	7.9
Cd-108	0.89	1998	202 ± 9	4.5
In-113	4.3	1966	787 ± 70	8.9
Sn-112	0.97	1979, 1989	210 ± 12	5.7
Sn-114	0.65	1996	134.4 ± 1.8	1.3
Sn-115	0.34	1996	342.4 ± 8.7	2.5
Te-120	0.096	2005	499 ± 30	6.0
Xe-124	0.1	1991	644 ± 83	12.9
Xe-126	0.09	1991	359 ± 51	14.2
Ba-130	0.106	2005	767 ± 40	5.2
Ba-132	0.101	2005	399 ± 25	6.3
Ce-136	0.185	1996	328 ± 21	6.4
Ce-138	0.251	1996	179 ± 5	2.8
La-138	0.09		767*	
Sm-144	3.07	1993	92 ± 6	6.5
Dy-156	0.06	1985	1567 ± 145	9.3
Dy-158	0.1		1060 ± 400	37.7
Er-162	0.14	1996	1624 ± 124	7.6
Yb-168	0.13		1160 ± 440	37.9
Hf-174	0.16		983 ± 46	4.7
W-180	0.12	1987	536 ± 60	11.2
Os-184	0.02		657 ± 202	30.7
Pt-190	0.014	1999	677 ± 183	27
Hg-196	0.15		650 ± 82	12.6

Status gwiezdnego przekroju czynnego typu (*n*, γ)

- (26) eksperymentalnych wartości przekrojów czynnych typu (n, γ);
- (7) z błędem $\ge 9\%$;
- (6) teoretyczne lub pół-empiryczne wartości.

Motywacja

Bardziej dokładne wartości przekrojów czynnych typu (n,γ) niezbędne są do precyzyjniejszego modelowania przebiegu nukleosyntezy ciężkich pierwiastków w procesie *p*:

- przekrój czynny (n, γ) dla ¹⁶⁸Yb, ¹⁸⁴Os i ¹⁹⁶Hg dotychczas jedynie teoretyczna wartość, przekrój czynny (n, γ) dla ¹⁹⁰Pt błąd > 27%;
- reakcje (*n*, γ) konkurują z reakcjami (γ,*n*);
- wychwyty neutronów odgrywają rolę jako reakcje "freeze-out".

		Lu 1 7m/5	168 .5m	Lu ′ 3m/1	169 I.4d	Lu 1 2.0	Lu 17 76s/8.2		
		Yb 17.7	167 7m	Yb ′ 0.1	168 I3	Yb 1 46s/	169 32d	Yb17 3.04	
		Tm 7.7	166 ′d	Tm167 9.25d		Tm´ 93.	Tm 16 100		
u 190 ^{12.8m}	Au 1s/3	191 3.18h	Au 5.	192 .0h	Au 4s/	193 18h			
rt 189 11h	Pt 0.01/	190 ′10¹¹a	Pt 2.	191 .8d	Pt 0.1	192 782			
r 188 41.4h	Ir 189 13.3d		Ir 190 3h/1h/12d		lr ′ 5s/	191 37.3			

Ir 184	Ir 185	Ir 186	Ir 187		
3.0h	14.4h	2h/17h	10.5h		
Os 183	Os 184	Os 185	Os 186		
10h/13 h	0.02	_{94d}	1.6/ <mark>10¹⁵a</mark>		
Re 182	Re 183	Re 184	Re 185		
13h/64h	^{71d}	169/38d	37.40		

TI 196	TI 197	TI 198	TI 199
1.4h/2h	2.84h	2h/5.3h	7.42h
Hg 195	Hg 196	Hg 197	Hg 198
40h/9h	0.15	24h/64h	9.97
Au 194	Au 195	Au 196	Au197
_{38h}	30s/186d	9h/8s/6d	100

Pomiary przekrojów czynnych

- metoda aktywacji

Dwa etapy metody aktywacji:

1. wychwyt radiacyjny neutronów;

2. wyznaczenie wywołanej aktywności.

Zalety i wady metody aktywacji

Zalety:

- dokładne wyznaczanie nawet małych przekrojów czynnych;
- wysoka czułość możliwość użycia niewielkiej ilości badanego izotopu lub próbek naturalnych;
- użycie ¹⁹⁷Au(n, γ) jako standardu;
- użycie detektorów HPGe;
- bezpośredni pomiar Maxwellowskiego Uśrednionego Przekroju Czynnego.

Wady:

- produkt aktywacji musi być nietrwały;
- jego czas połowicznego zaniku musi zawierać się w przedziale sekundy lata.

Pomiary przekrojów czynnych

Pomiary przekrojów czynnych - próbki

- naturalny Yb: ¹⁶⁸Yb (0.13%);
- naturalny Os: ¹⁸⁴Os (0.02%);
- naturalna Pt: ¹⁹⁰Pt (0.014%);
- naturalna Hg: ¹⁹⁶Hg (0.15%);
- próbki w kształcie dysku→ sprasowane z odpowiedniego proszku, poza próbką Pt metalowa folia;
- próbki umieszczane pomiędzy dwoma złotymi foliami;
- pomiary wykonane dla kilku różnych średnic i grubości próbek.

Pomiary przekrojów czynnych - pomiar aktywności

Wywołana aktywność w badanych próbkach i foliach Au wyznaczana była za pomocą pojedynczych HPGe detektorów oraz przy pomocy detektora HPGe typu clover.

Pomiary przekrojów czynnych - pomiar aktywności

Do obliczeń wykorzystane zostały najbardziej intensywne linie gamma pochodzące z rozpadu jąder powstałych w trakcie aktywacji.

Pomiary przekrojów czynnych - analiza danych

Po aktywacji:
$$A = \Phi_{\text{tot}} N \sigma f_B$$
 gdzie: $f_B = \frac{\int_0^0 \Phi(t) e^{-\lambda(t_a - t)} dt}{\int_0^{t_a} \Phi(t) dt}$

Liczba zliczeń *C* w detektorze: $C = AK_{\gamma}\varepsilon_{\gamma}I_{\gamma}(1-e^{-\lambda t_{m}})e^{-\lambda t_{w}}$

Współczynnik samopochłaniania kwantów gamma: $K_{\gamma} = \frac{1 - e^{-\mu x}}{\mu x}$

Ponieważ wszystkie pomiary wykonane zostały w stosunku do ¹⁹⁷Au jako standardu można napisać:

$$\frac{A_i}{A_{Au}} = \frac{\sigma_i}{\sigma_{Au}} \cdot \frac{N_i}{N_{Au}} \cdot \frac{f_{B_i}}{f_{B_{Au}}} \checkmark$$

z równania tego — wyznaczany jest przekrój czynny *o*i

Pomiary przekrojów czynnych - analiza danych

Eksperymentalny przekrój czynny może być przekształcony w Maxwellowski Uśredniony Przekrój Czynny dla *kT*=25 keV używając relacji:

Krok ten wymaga nieznacznej korekty ze względu na fakt, iż eksperymentalne widmo neutronów nieco odbiega od rzeczywistego termalnego rozkładu.

Wyniki – ¹⁶⁸Yb

$(\sigma)_{30} = (1214 \pm 49) \text{ mbarn } (4\%)$

Wyniki – ¹⁸⁴Os

$(\sigma)_{30} = (590 \pm 39) \text{ mbarn } (6.5\%)$

Wyniki – ¹⁹⁰Pt

$\langle \sigma \rangle_{30} = (567 \pm 67) \text{ mbarn } (12\%)$

Wyniki – ¹⁹⁶Hg

$\langle \sigma \rangle_{30} = (204 \pm 8) \text{ mbarn } (3.8\%)$ $\langle \sigma \rangle_{30}(\text{part}) = (26.7 \pm 1.3) \text{ mbarn } (4.4\%)$

Błędy

¹⁶⁸ Yb								
	Błąd %							
Standard Au	2.00							
Wydajność detektora	2.00							
Samoabsorpcja kwantów gamma	0.01 - 0.12							
Intensywność linii gamma	1.79 – 1.96							
Przebieg aktywacji	pomijalny							
Czas połowicznego zaniku	0.02							
Statystyka	0.29 - 2.20							
Całkowity błąd	4.0 - 4.1							

¹⁹⁰ Pt								
	Błąd %							
Standard Au	2.00							
Wydajność detektora	2.00							
Samoabsorpcja kwantów gamma	0.10							
Intensywność linii gamma	10.95 – 11.67							
Przebieg aktywacji	0.46 - 0.73							
Czas połowicznego zaniku	0.89							
Statystyka	0.13 – 0.91							
Całkowity błąd	11.4 – 12.2							

¹⁸⁴ Os								
	Błąd %							
Standard Au	2.00							
Wydajność detektora	2.00							
Samoabsorpcja kwantów gamma	0.10							
Intensywność linii gamma	3.97							
Przebieg aktywacji	0.01 - 0.02							
Czas połowicznego zaniku	0.53							
Statystyka	0.10 - 0.22							
Całkowity błąd	6.5 - 6.6							

¹⁹⁶ Hg							
	Błąd %						
Standard Au	2.00						
Wydajność detektora	2.00						
Samoabsorpcja kwantów gamma	0.07 - 0.12						
Intensywność linii gamma	2.14						
Przebieg aktywacji	0.05 - 0.08						
Czas połowicznego zaniku	0.08						
Błąd od stanu izomerycznego	0.10						
Statystyka	0.40 - 0.79						
Całkowity błąd	3.9 - 4.0						

Wyniki

Pierwiastek	Izotop	MACS (mbarn)	Błąd (%)	Poprzednia wartość (mbarn)	Błąd (%)
	¹⁶⁸ Yb	1214 ± 49	4.0	1160 ± 440	38
Iterb	¹⁷⁴ Yb	156 ± 6	3.7	151 ± 2	1.3
	¹⁷⁶ Yb	113 ± 10	9.3	116 ± 2	1.7
	¹⁸⁴ Os	590 ± 39	6.5	657 ± 200	31
Osm	¹⁹⁰ Os	274 ± 12	4.5	295 ± 45	15
	¹⁹² Os	155 ± 7	4.7	311 ± 45	14.5
	¹⁹⁰ Pt	567 ± 67	12.0	677 ± 180	27
Distuns	¹⁹⁶ Pt	171 ± 22	13.0	197 ± 23	11.7
Platylla	¹⁹⁶ Pt ^m	11.4 ± 0.5	4.3	13.0 ± 1.4	10.8
	¹⁹⁸ Pt	94 ± 5	5.2	82 ± 12	14.6
	¹⁹⁶ Hg	204 ± 8	3.8	650 ± 80	12.6
Rtęć	¹⁹⁶ Hg ^m	26.7 ± 1.3	4.4	_	_
	²⁰² Hg	62 ± 2	3.2	74 ± 6	8

Metoda aktywacji Meto

Metoda TOF

Wartość teoretyczna

Metoda TOF z lat 80-tych

Hg 178	Hg 179	Hg 180	Hg 181	Hg 182	Hg 183	Hg 184	Hg 185	Hg 186	Hg 187	Hg 188	Hg 189	Hg 190	Hg 191	Hg 192	Hg 193	Hg 194	Hg 195	Hg 196	Hg 197	Hg 198	
Au 177	Au 178	Au 179	Au 180	Au 181	Au 182	Au 183	Au 184	Au 185	Au 186	Au 187	Au 188	Au 189	Au 190	Au 191	Au 192	Au 193	Au 194	Au 195	Au 196	Au 197	
Pt 176	Pt 177	Pt 178	Pt 179	Pt 180	Pt 181	Pt 182	Pt 183	Pt 184	Pt 185	Pt 186	Pt 187	Pt 188	Pt 189	Pt 190	Pt 191	Pt 192	Pt 193	Pt 194	Pt 195	Pt 196	
lr 175	lr 176	lr 177	lr 178	lr 179	lr 180	lr 181	lr 182	lr 183	lr 184	lr 185	lr 186	lr 187	lr 188	lr 189	lr 190	lr 191	lr 192	lr 193	lr 194	lr 195	
Os 174	Os 175	Os 176	Os 177	Os 178	Os 179	Os 180	Os 181	Os 182	Os 183	Os 184	Os 185	Os 186	Os 187	Os 188	Os 189	Os 190	Os 191	Os 192	Os 193	Os 194	
Re 173	Re 174	Re 175	Re 176	Re 177	Re 178	Re 179	Re 180	Re 181	Re 182	Re 183	Re 184	Re 185	Re 186	Re 187	Re 188	Re 189	Re 190	Re 191	Re 192	Re 193	
W 172	W 173	W 174	W 175	W 176	W 177	W 178	W 179	W 180	W 181	W 182	W 183	W 184	W 185	W 186	W 187	W 188	W 189	W 190	W 191	W 192	
Та 171	Та 172	Та 173	Та 174	Та 175	Та 176	Та 177	Та 178	Та 179	Ta 180	Ta 181	Та 182	Та 183	Та 184	Та 185	Та 186	Та 187	Та 188	Та 189			
Hf 170	Hf 171	Hf 172	Hf 173	Hf 174	Hf 175	Hf 176	Hf 177	Hf 178	Hf 179	Hf 180	Hf 181	Hf 182	Hf 183	Hf 184	Hf 185	Hf 186	Hf 187	Hf 188			
Lu 169	Lu 170	Lu 171	Lu 172	Lu 173	Lu 174	Lu 175	Lu 176	Lu 177	Lu 178	Lu 179			bra	anchi point	ng	(γ,n)		(*	γ, n)		
Yb 168	Yb 169	Yb 170	Yb 171	Yb 172	Yb 173	Yb 174	Yb 175	Yb 176	Yb 177	Yb 178	\bigcirc	$\left(\gamma \alpha \right)$)••-(-		C
													5		,y)) (\bigcirc				
										\supset		\bigcirc) (\bigcirc			\supset	\bigcirc			
							β-	E		Ι (γ	,p)				Ć		\bigcap				
									(γ,n)			(γ.	n)			\bigcirc				

Wyniki

Pierwiastek	Izotop	MACS (mbarn)	Błąd (%)	Poprzednia wartość (mbarn)	Błąd (%)
	¹⁶⁸ Yb	1214 ± 49	4.0	1160 ± 440	38
Iterb	¹⁷⁴ Yb	156 ± 6	3.7	151 ± 2	1.3
	¹⁷⁶ Yb	113 ± 10	9.3	116 ± 2	1.7
	¹⁸⁴ Os	590 ± 39	6.5	657 ± 200	31
Osm	¹⁹⁰ Os	274 ± 12	4.5	295 ± 45	15
	¹⁹² Os	155 ± 7	4.7	311 ± 45	14.5
	¹⁹⁰ Pt	567 ± 67	12.0	677 ± 180	27
Distuns	¹⁹⁶ Pt	171 ± 22	13.0	197 ± 23	11.7
Platylla	¹⁹⁶ Pt ^m	11.4 ± 0.5	4.3	13.0 ± 1.4	10.8
	¹⁹⁸ Pt	94 ± 5	5.2	82 ± 12	14.6
	¹⁹⁶ Hg	204 ± 8	3.8	650 ± 80	12.6
Rtęć	¹⁹⁶ Hg ^m	26.7 ± 1.3	4.4	_	_
	²⁰² Hg	62 ± 2	3.2	74 ± 6	8

Metoda aktywacji Meto

Metoda TOF

Wartość teoretyczna

Metoda TOF z lat 80-tych

Podsumowanie

- wszystkie pomiary wykonane zostały za pomocą metody aktywacji;
- dotychczas, przekroje czynne typu (n, γ) dla ¹⁶⁸Yb, ¹⁸⁴Os i ¹⁹⁶Hg znane jedynie teoretyczne wartości;
- większość nowo-uzyskanych wyników obarczonych jest zdecydowanie mniejszymi błędami niż dotychczasowe dane;
- nowe, bardziej dokładne wartości przekrojów czynnych typu (*n*, γ) dla ¹⁶⁸Yb, ¹⁷⁴Yb, ¹⁷⁶Yb, ¹⁸⁴Os, ¹⁹⁰Os, ¹⁹²Os, ¹⁹⁰Pt, ¹⁹⁶Pt, ¹⁹⁸Pt, ¹⁹⁶Hg, oraz ²⁰²Hg, posłużą do bardziej precyzyjnej symulacji przebiegu procesu nukleosyntezy ciężkich pierwiastków w procesie *p*.

Isotope	El. Abund. %	Year	(<i>n, y</i>) MACS at 30 keV	Uncert. %
Se-74	0.89	2004	271 ± 15	5.5
Kr-78	0.35	1991	312 ± 26	8.3
Sr-84	0.56	2004	300 ± 17	5.7
Mo-92	14.84	1978	70 ± 10	14.3
Mo-94	9.25	1972, 1978	102 ± 20	19.6
Ru-96	5.52	2002	207 ± 8	3.9
Ru-98	1.88		173 ± 36	20.8
Pd-102	1.02	2005	370 ± 20	5.4
Cd-106	1.25	1998	302 ± 24	7.9
Cd-108	0.89	1998	202 ± 9	4.5
In-113	4.3	1966	787 ± 70	8.9
Sn-112	0.97	1979, 1989	210 ± 12	5.7
Sn-114	0.65	1996	134.4 ± 1.8	1.3
Sn-115	0.34	1996	342.4 ± 8.7	2.5
Te-120	0.096	2005	499 ± 30	6.0
Xe-124	0.1	1991	644 ± 83	12.9
Xe-126	0.09	1991	359 ± 51	14.2
Ba-130	0.106	2005	767 ± 40	5.2
Ba-132	0.101	2005	399 ± 25	6.3
Ce-136	0.185	1996	328 ± 21	6.4
Ce-138	0.251	1996	179 ± 5	2.8
La-138	0.09		767*	
Sm-144	3.07	1993	92 ± 6	6.5
Dy-156	0.06	1985	1567 ± 145	9.3
Dy-158	0.1		1060 ± 400	37.7
Er-162	0.14	1996	1624 ± 124	7.6
Yb-168	0.13	2007	1214 ± 49	4 (37.9)
Hf-174	0.16		983 ± 46	4.7
W-180	0.12	1987	536 ± 60	11.2
Os-184	0.02	2007	590 ± 39	6.5 (30.7)
Pt-190	0.014	2007	567 ± 67	12 (27)
Hg-196	0.15	2007	204 ± 8	3.8 (12.6)

Obecny status gwiezdnego przekroju czynnego typu (*n*, γ)

- eksperymentalne wartości przekrojów czynnych typu (n,);
- z błędem \geq 9%;
- teoretyczne lub pół-empiryczne wartości;
- nowe eksperymentalne wartości
- planowany pomiar

