Nowe funkcjonały gęstości do opisu własności jąder atomowych

Jacek Dobaczewski University of Warsaw & University of Jyväskylä

Seminarium "Struktura jądra atomowego" Uniwersytet Warszawski 8 kwietnia 2009

Jacek Dobaczewsk

Współpracownicy od lewej: Francesco Raimondi Alessandro Pastore Gillis Carlsson Pekka Toivanen Kazuhito Mizuyama Rayner Rodriguez-Guzman Jussi Toivanen oraz Markus Kortelainen (ORNL) Marcin Borucki (UW)

Plan seminarium

- 1. Wstęp podstawy teorii funkcjonału gęstości.
- 2. Dopasowanie stałych sprzężenia funkcjonału do doświadczalnych energii jednocząstkowych.
- 3. Poszukiwanie nowych funkcjonałów gęstości o jakości spektroskopowej.
- 4. Uzależnienie wszystkich stałych sprzężenia funkcjonału od gęstości.
- 5. Nowe człony funkcjonału do szóstego rzędu w pochodnych.
- 6. Wnioski, perspektywy i plany.

Nuclear Energy Density Functional

We consider the EDF in the form,

$${\cal E}=\int\!\!d^3r{\cal H}(r),$$

where the energy density $\mathcal{H}(r)$ can be represented as a sum of the kinetic energy and of the potential-energy isoscalar (t = 0) and isovector (t = 1) terms,

$$\mathcal{H}(r) = rac{\hbar^2}{2m} au_0 + \mathcal{H}_0(r) + \mathcal{H}_1(r),$$

which for the time-reversal and spherical symmetries imposed read:

$$\mathcal{H}_t(r) = C_t^
ho
ho_t^2 + C_t^ au
ho_t au_t + C_t^{\Delta
ho}
ho_t \Delta
ho_t + rac{1}{2} C_t^J J_t^2 + C_t^{
abla J}
ho_t
abla \cdot J_t.$$

Following the parametrization used for the Skyrme forces, we assume the dependence of the coupling parameters C_t^{ρ} on the isoscalar density ρ_0 as:

$$C^
ho_t = C^
ho_{t0} + C^
ho_{t\mathrm{D}}
ho_0^lpha.$$

The standard EDF depends linearly on 12 coupling constants,

$$C_{t0}^{
ho}, \quad C_{t\mathrm{D}}^{
ho}, \quad C_t^{ au}, \quad C_t^{\Delta
ho}, \quad C_t^{\mathrm{J}}, \quad \mathrm{and} \quad C_t^{\nabla \mathrm{J}},$$

for t = 0 and 1.

Mean-field equations

Mean-field potentials:

$$\begin{split} \Gamma_t^{\text{even}} &= -\vec{\nabla} \cdot M_t(\vec{r})\vec{\nabla} + U_t(\vec{r}) + \frac{1}{2i}(\vec{\nabla}\vec{\sigma}\cdot\vec{B}_t(\vec{r}) + \vec{B}_t(\vec{r})\cdot\vec{\nabla}\vec{\sigma}) \\ \Gamma_t^{\text{odd}} &= -\vec{\nabla} \cdot (\vec{\sigma}\cdot\vec{C}_t(\vec{r}))\vec{\nabla} + \vec{\sigma}\cdot\vec{\Sigma}_t(\vec{r}) + \frac{1}{2i}(\vec{\nabla}\cdot\vec{I}_t(\vec{r}) + \vec{I}_t(\vec{r})\cdot\vec{\nabla}) - \vec{\nabla}\cdot\vec{D}_t(\vec{r})\vec{\sigma}\cdot\vec{\nabla} \end{split}$$

where

$$\begin{split} U_t &= 2C_t^{\rho}\rho_t + 2C_t^{\Delta\rho}\Delta\rho_t + C_t^{\tau}\tau_t + C_t^{\nabla J}\vec{\nabla}\cdot\vec{J_t}, \\ \vec{\Sigma}_t &= 2C_t^s\vec{s}_t + 2C_t^{\Delta s}\Delta\vec{s}_t + C_t^T\vec{T}_t + C_t^{\nabla j}\vec{\nabla}\times\vec{j}_t, -2C_t^{\nabla s}\Delta\vec{s}_t + C_t^F\vec{F}_t - 2C_t^{\nabla s}\vec{\nabla}\times(\vec{\nabla}\times\vec{s}_t) \\ M_t &= C_t^{\tau}\rho_t, \\ \vec{C}_t &= C_t^T\vec{s}_t, \\ \vec{B}_t &= 2C_t^J\vec{J}_t - C_t^{\nabla J}\vec{\nabla}\rho_t, \\ \vec{I}_t &= 2C_t^j\vec{j}_t + C_t^{\nabla j}\vec{\nabla}\times\vec{s}_t, \\ \vec{D}_t &= C_t^F\vec{s}_t, \end{split}$$

Neutron and proton mean-field Hamiltonians:

$$egin{array}{lll} h_n &=& -rac{\hbar^2}{2m}\Delta + \Gamma_0^{ ext{even}} + \Gamma_0^{ ext{odd}} + \Gamma_1^{ ext{even}} + \Gamma_1^{ ext{odd}}, \ h_p &=& -rac{\hbar^2}{2m}\Delta + \Gamma_0^{ ext{even}} + \Gamma_0^{ ext{odd}} - \Gamma_1^{ ext{even}} - \Gamma_1^{ ext{odd}}. \end{array}$$

HF equation for single-particle wave functions:

$$h_lpha \psi_{i,lpha}(ec{r}\sigma) = \epsilon_{i,lpha} \psi_{i,lpha}(ec{r}\sigma),$$

where *i* numbers the neutron $(\alpha = n)$ and proton $(\alpha = p)$ eigenstates.

Phenomenological effective interactions

Gogny force.*

$$ilde{G}_{xyx'y'} = \delta(ec{x}-ec{x}')\delta(ec{y}-ec{y}')G(x,y),$$

where the tilde denotes a non-antisymmetrized matrix element $(G_{xyx'y'} = ilde{G}_{xyx'y'} \tilde{G}_{xyy'x'}$), and G(x,y) is a sum of two Gaussians, plus a zero-range, density dependent part.

$$egin{split} G(x,y) &= {\displaystyle \sum_{i=1,2}} e^{-(ec{x}-ec{y})^2/\mu_i^2} imes (W_i + B_i P_\sigma - H_i P_ au - M_i P_\sigma P_ au) \ &+ t_3 (1+P_\sigma) \delta(ec{x}-ec{y})
ho^{1/3} \left[rac{1}{2} (ec{x}+ec{y})
ight]. \end{split}$$

In this Equation, $P_{\sigma} = \frac{1}{2}(1 + \vec{\sigma}_1 \cdot \vec{\sigma}_2)$ and $P_{\tau} = \frac{1}{2}(1 + \vec{\tau}_1 \cdot \vec{\tau}_2)$ are, respectively, the spin and isospin exchange operators of particles 1 and 2, $\rho(\vec{r})$ is the total density of the system at point \vec{r} , and $\mu_i = 0.7$ and 1.2 fm, W_i , B_i , H_i , M_i , and t_3 are parameters. Skyrme force.*

$$ilde{G}_{xyx'y'} = \left\{ t_0 (1+x_0 P^\sigma) + rac{1}{6} t_3 (1+x_3 P^\sigma)
ho^lpha \left(rac{1}{2} (ec{x}+ec{y})
ight)
ight.$$

 $\left. + \tfrac{1}{2} t_1 (1 + x_1 P^{\sigma}) [\vec{k}^2 + \vec{k}'^2] + t_2 (1 + x_2 P^{\sigma}) \vec{k}^* \cdot \vec{k}' \right\} \delta(\vec{x} - \vec{x}') \delta(\vec{y} - \vec{y}') \delta(\vec{x} - \vec{y}),$

where the relative momentum operators read

$$\hat{\vec{k}} = \frac{1}{2i} \left(\vec{\nabla}_x - \vec{\nabla}_y \right), \qquad \hat{\vec{k}}' = \frac{1}{2i} \left(\vec{\nabla}_x' - \vec{\nabla}_y' \right).$$

ne spin-orbit and tensor terms for simplicity.

*We omit th

Fits of single-particle energies

Fit residuals for centroids of SO partners

Jacek Dobaczewski

JYVÄSKYLÄN YLIOPISTO

M. Kortelainen e*t al.*, to be published

Jacek Dobaczewski

JYVÄSKYLÄN YLIOPISTO

M. Kortelainen e*t al.*, to be published

How many parameters are really needed?

I. Density dependence of all the coupling constants For the time-reversal and spherical symmetries imposed, the extended

For the time-reversal and spherical symmetries imposed, the extended EDF reads

$$egin{aligned} \mathcal{H}_t(r) &= C_t^
ho
ho_t^2 + \, C_t^ au
ho_t au_t \,+\, C_t^{\Delta
ho}
ho_t \Delta
ho_t \,+\, rac{1}{2} C_t^J J_t^2 \,+\, C_t^{
abla J}
ho_t
abla \cdot J_t \ &+\, C_t^{
abla
ho} (
abla
ho_t)^2 \,+\, C_t^{
abla
ho'} (
abla
ho_t) \cdot J_t \end{aligned}$$

and depends linearly on 38 coupling constants,

for t = 0 and 1, i.e.,

$$C_t^m(
ho_0,
ho_1) = C_t^m \left[1+lpha_t^m \left(1-\left(rac{
ho_0}{
ho_{ ext{sat}}}
ight)^{\gamma_t^m}
ight)+eta_t^m \left(\left(rac{
ho_1}{
ho_{ ext{sat}}}
ight)^2
ight)^{\eta_t^m}
ight]$$

and on 28 powers γ_t^m and η_t^m .

M. Kortelainen e*t al.*, to be published

Fit to single-particle energies

Jacek Dobaczewski

Stability of the Hartree-Fock solutions

N³LO in the chiral perturbation effective field theory

Table 1: Contact-gradient expansion for relative-coordinate two-particle matrix elements. Here $\overrightarrow{D}_{M}^{2} = (\overrightarrow{\nabla} \otimes \overrightarrow{\nabla})_{2M}$, $\overrightarrow{D}_{0}^{0} = [(\sigma(1) \otimes \sigma(2))_{2} \otimes D^{2}]_{00}$, $\overrightarrow{F}_{M}^{3} = (\overrightarrow{\nabla} \otimes \overrightarrow{D}^{2})_{3M}$, $\overrightarrow{F}_{M}^{1} = [(\sigma(1) \otimes \sigma(2))_{2} \otimes F^{3}]_{1M}$, $\overrightarrow{G}_{M}^{4} = (\overrightarrow{D}^{2} \otimes \overrightarrow{D}^{2})_{4M}$, $\overrightarrow{G}_{M}^{2} = [(\sigma(1) \otimes \sigma(2))_{2} \otimes G^{4}]_{2M}$, and the scalar product of tensor operators is defined as $A^{J} \cdot B^{J} = \sum_{M=-J}^{M=-J} (-1)^{M} A_{M}^{J} B_{-M}^{J}$.

Transitions	LO	NLO	NNLO	N ³ LO
$^3S_1 \leftrightarrow {}^3S_1$	$\delta(\mathbf{r})$	$\stackrel{\leftarrow}{ abla^2} \delta(\mathbf{r}) + \delta(\mathbf{r}) \stackrel{ ightarrow}{ abla^2}$	$\stackrel{\leftarrow}{ abla^2} \delta(\mathbf{r}) \stackrel{ ightarrow}{ abla^2}$	$\stackrel{\leftarrow}{\nabla^4} \delta(\mathbf{r}) \stackrel{\rightarrow}{\nabla^2} + \stackrel{\leftarrow}{\nabla^2} \delta(\mathbf{r}) \stackrel{\rightarrow}{\nabla^4}$
or ${}^1S_0 \leftrightarrow {}^1S_0$			$\stackrel{\leftarrow}{ abla^4} \delta({ m r}) + \delta({ m r}) \stackrel{ ightarrow}{ abla^4}$	$\stackrel{\leftarrow}{ abla^6} \delta({ m r}) + \delta({ m r}) \stackrel{ ightarrow}{ abla^6}$
$^3S_1 \leftrightarrow {}^3D_1$		$\delta(\mathbf{r}) \stackrel{ ightarrow}{D^0} + \stackrel{ ightarrow}{D^0} \delta(\mathbf{r})$	$\stackrel{\leftarrow}{ abla^2} \delta({ m r}) \stackrel{ ightarrow}{D^0} + \stackrel{ ightarrow}{D^0} \delta({ m r}) \stackrel{ ightarrow}{ abla^2}$	$(\stackrel{\leftarrow}{ abla^4} \delta(\mathbf{r}) \stackrel{\rightarrow}{D^0} + \stackrel{\leftarrow}{D^0} \delta(\mathbf{r}) \stackrel{\rightarrow}{ abla^4}$
			$\delta({ m r}) \stackrel{ ightarrow}{ abla^2} \stackrel{ ightarrow}{D^0} + \stackrel{ ightarrow}{D^0} \stackrel{ ightarrow}{ abla^2} \delta({ m r})$	$(\overrightarrow{\nabla^2} \delta(\mathbf{r}) \overrightarrow{\nabla^2} \overrightarrow{D^0} + \overrightarrow{D^0} \overrightarrow{\nabla^2} \delta(\mathbf{r}) \overrightarrow{\nabla^2}$
				$(\delta({ m r}) \stackrel{ ightarrow}{ abla}^4 \stackrel{ ightarrow}{D^0} + \stackrel{ ightarrow}{D^0} \stackrel{ ightarrow}{ abla}^4 \delta({ m r})$
$ \begin{array}{c} {}^1D_2 \leftrightarrow {}^1D_2 \\ \text{or} {}^3D_J \leftrightarrow {}^3D_J \end{array} $			$\overrightarrow{D^2} \cdot \delta(\mathbf{r}) \overrightarrow{D^2}$	$ \overrightarrow{D^2 \nabla^2} \cdot \delta(\mathbf{r}) \ \overrightarrow{D^2} + \overrightarrow{D^2} \cdot \delta(\mathbf{r}) \ \overrightarrow{\nabla^2 D^2} $
$^{3}D_{3} \leftrightarrow ^{3}G_{3}$				$(\stackrel{\leftarrow}{D^2}\cdot\delta(\mathbf{r})\stackrel{\rightarrow}{G^2}+\stackrel{\leftarrow}{G^2}\cdot\delta(\mathbf{r})\stackrel{\rightarrow}{D^2}$
$^{1}P_{1} \leftrightarrow ^{1}P_{1}$		$\stackrel{\leftarrow}{ abla} \cdot \delta({f r}) \stackrel{ ightarrow}{ abla}$	$\stackrel{\leftarrow}{\nabla} \stackrel{\leftarrow}{\nabla^2} \cdot \delta(\mathbf{r}) \stackrel{ ightarrow}{\nabla} + \stackrel{\leftarrow}{\nabla} \cdot \delta(\mathbf{r}) \stackrel{ ightarrow}{\nabla^2} \stackrel{ ightarrow}{\nabla}$	$\overleftarrow{ abla} \overrightarrow{ abla}^{+} \cdot \delta(\mathbf{r}) \ \overrightarrow{ abla}^{2} \overrightarrow{ abla}$
or ${}^{3}P_{J} \leftrightarrow {}^{3}P_{J}$				$\overleftarrow{ abla} \overrightarrow{ abla}^{\leftarrow} \cdot \delta(\mathbf{r}) \; \overrightarrow{ abla} + \overleftarrow{ abla} \; \cdot \delta(\mathbf{r}) \; \overrightarrow{ abla}^4 \overrightarrow{ abla}$
$^{3}P_{2} \leftrightarrow ^{3}F_{2}$			$\stackrel{\leftarrow}{ abla} \cdot \delta({ m r}) \stackrel{ ightarrow}{F^1} + \stackrel{ ightarrow}{F^1} \cdot \delta({ m r}) \stackrel{ ightarrow}{ abla}$	$\stackrel{\leftarrow}{\nabla}\stackrel{\leftarrow}{\nabla}^2\cdot\delta({ m r})\stackrel{ ightarrow}{F^1}+\stackrel{ ightarrow}{F^1}\cdot\delta({ m r})\stackrel{ ightarrow}{ abla}^2\stackrel{ ightarrow}{ abla}$
				$\stackrel{\leftarrow}{\nabla} \cdot \delta(\mathbf{r}) \stackrel{\rightarrow}{\nabla^2} \stackrel{\rightarrow}{F^1} + \stackrel{\leftarrow}{F^1} \stackrel{\leftarrow}{\nabla^2} \cdot \delta(\mathbf{r}) \stackrel{\rightarrow}{\nabla}$
$ \begin{array}{c} {}^1F_3 \leftrightarrow {}^1F_3 \\ \text{or} \; {}^3F_J \leftrightarrow {}^3F_J \end{array} $				$\stackrel{\leftarrow}{F^3} \cdot \delta(\mathbf{r}) \stackrel{ ightarrow}{F^3}$

EFT phase-shift analysis

np phase parameters below 300 MeV lab. energy for partial waves with J=0,1,2. The solid line is the result at N³LO. The dotted and dashed lines are the phase shifts at NLO and NNLO, respectively, as obtained by Epelbaum *et al*. The solid dots show the Nijmegen multi-energy np phase shift analysis and the open circles are the VPI single-energy np analysis SM99.

Jacek Dobaczewski

JYVÄSKYLÄN YLIOPISTO

C68 (2003) 04100

Machleidt, Phys.Rev.

Ż

Entem and

Ř

II. Derivatives of higher order up to N³LO

Nr	Tensor	order n	rank L	Nr	Tensor	order n	rank L
1	1	0	0	1	1	0	0
2	∇	1	1	2	\boldsymbol{k}	1	1
3	Δ	2	0	3	k^2	2	0
4	$[abla abla]_2$	2	2	4	$[kk]_2$	2	2
5	$\Delta \overline{\nabla}$	3	1	5	k^2k	3	1
6	$[abla [abla abla]_2]_3$	3	3	6	$[k[kk]_2]_3$	3	3
7	Δ^2	4	0	7	$(k^2)^2$	4	0
8	$\Delta [abla abla]_2$	4	2	8	$k^2[kk]_2$	4	2
9	$[\mathbf{ abla}[\mathbf{ abla}\mathbf{ abla}\mathbf{ abla}]_2]_3]_4$	4	4	9	$[k[k[kk]_2]_3]_4$	4	4
10	$\Delta^2 abla$	5	1	10	$(k^2)^2 k$	5	1
11	$\Delta [abla [abla abla abla]_2]_3$	5	3	11	$k^2[k[kk]_2]_3$	5	3
12	$[oldsymbol{ abla} [oldsymbol{ abla} [oldsymbol{ abla} [oldsymbol{ abla} [oldsymbol{ abla} [oldsymbol{ abla}]_2]_3]_4]_5$	5	5	12	$[k[k[kk]_2]_3]_4]_5$	5	5
13	Δ^3	6	0	13	$(k^2)^3$	6	0
14	$\Delta^2 [oldsymbol{ abla} abla]_2$	6	2	14	$(k^2)^2[kk]_2$	6	2
15	$\Delta [abla [abla [abla [abla \nabla [abla \nabla]_2]_3]_4]$	6	4	15	$k^2[k[k[kk]_2]_3]_4$	6	4
16	$[\mathbf{\nabla}[\mathbf{\nabla}[\mathbf{\nabla}[\mathbf{\nabla}[\mathbf{\nabla}\mathbf{\nabla}]_2]_3]_4]_5]_6$	6	6	16	$[k[k[k[kk]_2]_3]_4]_5]_6$	6	6
Total derivatives $(\vec{\nabla}^m)_I$ up to N ³ LO			Relative derivatives $(\vec{k}^n)_L$ up to N ³ LO				

 $oldsymbol{
abla} = oldsymbol{
abla}_1 + oldsymbol{
abla}_2, \quad k = rac{1}{2i} \left(oldsymbol{
abla}_1 - oldsymbol{
abla}_2
ight),$

$$ho_{v=0}=
ho(r_1,r_2), ~~
ho_{v=1}=ec s(r_1,r_2),$$

 $\rho_{nLvJ} = \left((\vec{k}^n)_L \rho_v \right)_J (\text{primary}), \rho_{mInLvJQ} = \left((\vec{\nabla}^m)_I \left((\vec{k}^n)_L \rho_v \right)_J \right)_Q (\text{secondary})$

IFT IIII VX

8.G. Carlsson et al., Phys. Rev. C 78, 044326 (2008

Energy density functional up to N³LO

order	from ρ	from \vec{s}	T-even	T-odd	total
0	1	1	1	1	2
1	1	3	3	1	4
2	2	4	2	4	6
3	2	6	6	2	8
4	2	5	2	5	7
5	1	4	4	1	5
6	1	2	1	2	3
total	10	25	19	16	35

Numbers of primary (m = 0) local-densities up to N³LO.

order	T-even	T-odd	total	Galilean	Gauge
				invariant	invariant
0	1	1	2	2	2
2	6	6	12	7	7
4	22	23	45	15	6
6	64	65	129	26	6
N ³ LO	93	95	188	50	21
	_				

Numbers of terms in the EDF up to $N^{3}LO$.

Numbers of terms in the density functional

Energy density functional for spherical

JYVÄSKYLÄN YLIOPISTO

For conserved spherical, space-**NUGLC** in the EDF up to N^3LO , evaluated for the conserved spherical.

$$egin{aligned} R_0 &=
ho, \ R_2 &= ec{k}^2
ho = au - rac{1}{4} \Delta
ho, \ ec{R}_{2ab} &= ec{k}_a ec{k}_b
ho, \ R_4 &= ec{k}^4
ho, \ ec{R}_{4ab} &= ec{k}^2 ec{k}_a ec{k}_b
ho, \ ec{R}_{6ab} &= ec{k}^6
ho, \end{aligned}$$

and

$$egin{aligned} ec{J}_{1a} &= (ec{k} imes ec{s})_a, \ ec{J}_{3a} &= ec{k}^2 (ec{k} imes ec{s})_a, \ ec{J}_{3abc} &= ec{k}_a ec{k}_b (ec{k} imes ec{s})_a + ec{k}_b ec{k}_c (ec{k} imes ec{s})_a \ &+ ec{k}_c ec{k}_a (ec{k} imes ec{s})_b, \ ec{J}_{5a} &= ec{k}^4 (ec{k} imes ec{s})_a, \end{aligned}$$

where $\vec{k}^2 = \sum_a \vec{k}_a \vec{k}_a$ and the Cartesian indices are defined as a, b, c = x, y, z. To lighten the notation, in these definitions we have omitted the arguments of local densities, \vec{r} , and limits of $\vec{r}' = \vec{r}$.

Jacek Dobaczewski

Numbers of terms of different orders in the EDF up to $N^{3}LO$, evaluated for the conserved spherical, space-inversion, and time-reversal symmetries. The last two columns give numbers of terms when the Galilean or gauge invariance is assumed, respectively.

order	Total	Galilean	Gauge
0	1	1	1
2	4	4	4
4	13	9	3
6	32	16	3
N ³ LO	50	30	11

Energy density functional for spherical

We can write the N³LO spherical energy density as a Atairth order, the energy density reads sum of contributions from zero, second, fourth, and ${\cal H}_6 \ = \ ar{C}^0_{e lpha} R_0 ar{\Delta}^3 R_0 + C^0_{42} R_0 \Delta^2 R_2$ sixth orders: $+ C_{04}^0 R_0 \Delta R_4 + C_{06}^0 R_0 R_6$ $\mathcal{H}=\mathcal{H}_0+\mathcal{H}_2+\mathcal{H}_4+\mathcal{H}_6.$ $+ C_{22}^2 R_2 \Delta R_2 + C_{04}^2 R_2 R_4$ $+ D^0_{42}R_0\Delta{\sum}_{ab}ec{
abla}_aec{
abla}_bec{R}_{2ab}+D^0_{24}R_0{\sum}_{ab}ec{
abla}_aec{
abla}_bec{R}_{4ab}$ where $\mathcal{H}_0=C^0_{00}R_0R_0,$ $+ D_{22}^2 R_2 {\sum}_{ab} ec{
abla}_a ec{
abla}_b \stackrel{.}{R}_{2ab} + E_{22}^2 {\sum}_{ab} \stackrel{.}{R}_{2ab} \Delta \stackrel{.}{R}_{2ab}$ $+ F_{22}^2 \sum_{abc} \stackrel{\sim}{R}_{2ab} \vec{
abla}_a \vec{
abla}_c \stackrel{\sim}{R}_{2cb} + E_{04}^2 \sum_{ab} \stackrel{\sim}{R}_{2ab} \stackrel{\sim}{R}_{4ab}$ ${\cal H}_2 \ = \ C_{20}^0 R_0 \Delta R_0 + C_{02}^0 R_0 R_2$ $+ C^1_{41}ec{J_1} \cdot \Delta^2 ec{J_1} + C^1_{23}ec{J_1} \cdot \Delta ec{J_3}$ $+ C_{11}^0 R_0 \vec{\nabla} \cdot \vec{J}_1, + C_{01}^1 \vec{J}_1^2,$ $+ C_{02}^{1} \vec{J_{1}} \cdot \vec{J_{5}} + C_{02}^{3} \vec{J_{3}} \cdot \vec{J_{3}}$ Energy densities \mathcal{H}_0 and \mathcal{H}_2 correspond, of course, $+ D_{41}^{1} \vec{J_{1}} \cdot \Delta \vec{\nabla} \left(\vec{\nabla} \cdot \vec{J_{1}} \right) + D_{23}^{1} \vec{J_{1}} \cdot \vec{\nabla} \left(\vec{\nabla} \cdot \vec{J_{3}} \right)$ to the standard Skyrme functional with $C_{00}^0 = C^{\rho}$, $C_{20}^0 = C^{\Delta \rho} + \frac{1}{4} C^{\tau}, \ C_{02}^0 = C^{\tau}, \ C_{11}^0 = C^{\nabla J},$ and $+ E_{23}^1 \sum_{abc} ec{J}_{1a} ec{
abla}_b ec{
abla}_c \stackrel{\leftrightarrow}{J}_{3abc} + D_{03}^3 \sum_{abc} ec{J}_{3abc} ec{J}_{3abc}$ $C_{01}^1 = C^{J1}$. At fourth order, the energy density reads $+ C^0_{51} R_0 \Delta^2 \left(ec{
abla} \cdot ec{J_1}
ight) + C^0_{33} R_0 \Delta \left(ec{
abla} \cdot ec{J_3}
ight)$ $\mathcal{H}_4 \ = \ C_{40}^0 R_0 \Delta^2 R_0 + C_{22}^0 R_0 \Delta R_2$ $+ C_{15}^0 R_0 (\vec{
abla} \cdot \vec{J}_5) + C_{21}^2 R_2 \Delta (\vec{
abla} \cdot \vec{J}_1)$ $+ C_{04}^0 R_0 R_4 + C_{02}^2 R_2 R_2$ $+ C_{13}^2 R_2 \left(ec{
abla} \cdot ec{J}_3
ight) + C_{11}^4 R_4 \left(ec{
abla} \cdot ec{J}_1
ight)$ $+ D_{22}^0 R_0 \sum_{ab} ec{
abla}_a ec{
abla}_b \stackrel{.}{R}_{2ab} + D_{02}^2 \sum_{ab} \overset{.}{R}_{2ab} \overset{.}{R}_{2ab}$ $+ D^0_{33} R_0 \sum_{abc} \vec{\nabla}_a \vec{\nabla}_b \vec{\nabla}_c \ \overrightarrow{J}_{3abc} + D^2_{13} \sum_{abc} \overrightarrow{R}_{2ab} \ \vec{\nabla}_c \ \overrightarrow{J}_{3abc}$ $+ C_{22}^{1} \vec{J}_{1} \cdot \Delta \vec{J}_{1} + C_{22}^{1} \vec{J}_{1} \cdot \vec{J}_{3}$ $+ \ D_{31}^2 {\sum}_{ab} \, {ar R}_{2ab} \, \Delta {ar
abla}_a {ar J}_{1b} + E_{13}^2 {\sum}_{ab} \, {ar R}_{2ab} \, {ar
abla}_a {ar J}_{3b} \, .$ $+ D_{21}^{1} \vec{J}_{1} \cdot \vec{\nabla} \left(\vec{\nabla} \cdot \vec{J}_{1}
ight)$ $+ D_{11}^4 \sum_{ab} \vec{R}_{1ab} \, \vec{
abla}_a \vec{J}_{1b}$ $+ \ C_{31}^0 R_0 \Delta \left(ec{
abla} \cdot ec{J_1}
ight) + C_{13}^0 R_0 \left(ec{
abla} \cdot ec{J_3}
ight)$ $+ E_{31}^2 \sum_{ab} \overleftrightarrow{R}_{2ab} \, ec{
abla}_a ec{
abla}_b \left(ec{
abla} \cdot ec{J}_1
ight).$ $+ C_{11}^2 R_2 \left(ec{
abla} \cdot ec{J_1}
ight) + D_{11}^2 {\sum}_{ab} \overleftrightarrow{R}_{2ab} \ ec{
abla}_a ec{J}_{1b},$ The energy densities above are given in terms of 50 coupling constants $C_{mn}^{n'}, D_{mn}^{n'}, E_{mn}^{n'}$, and $F_{mn}^{n'}$.

B.G. Carlsson e*t al.*, Phys. Rev. C 78, 044326 (2008)

Wnioski, perspektywy i plany

- Standardowa parametryzacja jądrowego funkcjonału rczająco bogata aby poprawnie Markus Kortelainen energie jednocząstkowe.
- Konieczi rdowej parametryzacji i **Gillis Carlsson** poszukiv ci o jakości spektros opowej.
- zacerzemek Olbratowsk **Jussi Toivanen** stałych sprzęże ia od gęstości
 - uwzglę Andrzej Baran uwzglę
- ga potęg gęstości 4. Implementacja nowej netod Jorge Moré QRPA opartej na algor mie gigantyczne i przejścia beta w jądrach deformowanych).
- Parametry masowe i ruch kolektywny (pzszczepienie i 5. pasma kolektywne)
- Profesjonalne dopasowania stałych sprzężenia. 6.

ny 🕁 gęstości

zez:

RPA