

Tomasz Matulewicz

16 X 2009

- 1. FAIR-przypomnienie
- 2. XXXI Mazurian Lakes Conference *Nuclear Physics and the Road to FAIR*
- a) QCD i materia hadronowa
- b) Antyprotony

FAIR

- c) Egzotyka jądrowa i jej struktury
- 3. FAIR-aktualności

- 1. FAIR-przypomnienie
- 2. XXXI Mazurian Lakes Conference Nuclear Physics and the Road to FAIR
- a) QCD i materia hadronowa
- b) Antyprotony

FAIR

- c) Egzotyka jądrowa i jej struktury
- 3. FAIR-aktualności

Summary of Research Areas at FAIR

The future Facility for Antiproton an Ion Research (FAIR)

(wg spisu początkowego)

Od 2006 też: Politechnika Krakowska, Politechnika Wrocławska

Kraków	29
Warszawa	30
Katowice	9
Kielce	2

- 1. FAIR-przypomnienie
- 2. XXXI Mazurian Lakes Conference Nuclear Physics and the Road to FAIR
- a) QCD i materia hadronowa
- b) Antyprotony

FAIR

- c) Egzotyka jądrowa i jej struktury
- 3. FAIR-aktualności

•Wykład inauguracyjny o Mazurach: Joanna Mariuk

•Koncert Camerata (+1)

•Wykład z historii fizyki: A.K.Wróblewski *Physics 1909*

•Regaty (5 biegów!): ponownie najlepszy sternik z zagranicy...

XXXI Mazurian Lakes Conference on Physics

PIASKI, Poland August 30 September 6 2009

NUCLEAR PHYSICS and the Road to FAIR

Advisory Board

G. Bollen (MSU) E.Bratkovskaya (Glessen) P.Butler (Liverpool) L.S.Cardman (Jlab) K.H.Langanke (GSI) M.Lewitowicz (GANIL) A.Maj (Cracow) **U.Mosel (Giessen)** W.Nazarewicz (Oak Ridge/Warsaw) N.Saito (KEK) H.Sakurai (RIKEN) P.Salabura (Cracow) C.Scheidenberger (GSI) P.Senger (GSI) M.Soveur (Saclay) H.Stoecker (GSI) A.Warczak (Cracow) **U.Wiedner (Bochum)** S.Wycech (Warsaw)

Main topics:

Nuclear matter and hadrons
 Physics with antiprotons
 Physics with exotic nuclei

Organized by:

the Andrzej Soltan Institute for Nuclear Studies, University of Warsaw, Pro Physica Foundation Contact: www.mazurian.fuw.edu.pl mazurian@fuw.edu.pl

Mazurian Lakes Conference on Physics

XXXI Mazurian Lakes Conference on Physics NUCLEAR PHYSICS and the Road to Fair August 30 – September 6, 2009 PIASKI Poland

14

na XXX

Organizatorzy: TM & Marek Pfützner Danka Chmielewska (sekretarz naukowy), Kasia Delegacz (sekretariat), Marek Karny (finanse), Michał Godlewski (żagle i regaty), Sebastian Małek (www.mazurian.fuw.edu.pl)

70 uczestników z 14 krajów; 30 z Polski

70 polskich uczestników FAIR

Podczas konferencji można było dowiedzieć się o postępie badań w <u>różnych</u> obszarach fizyki jądrowej

- 1. FAIR-przypomnienie
- 2. XXXI Mazurian Lakes Conference *Nuclear Physics and the Road to FAIR*
- a) QCD i materia hadronowa
- b) Antyprotony

FAIR

- c) Egzotyka jądrowa i jej struktury
- 3. FAIR-aktualności

Jan Królikowski, XL Zjazd PTF, Kraków, 2009

Lattice QCD results on bulk thermodynamics at zero and nonzero density

Monte Carlo integration: $\approx 10^{6}$ lattice points, $\approx 10^{8}$ degrees of freedom

- lattice effects are small, different actions give consistent results
- steep increase in energy density and pressure in a narrow temperature interval $T \approx (185 - 195) \text{ MeV}$
- transition is smooth: "crossover"

Contact of Lattice QCD with perturbative QCD still to be worked out: actual agreement not yet satisfactory.

The Quest for the Highest Densities

Freeze-out configurations for X+X collisions in the net-baryon density and energy density plane.

NA49 evidence for the Onset of Deconfinement

K. Grebieszkow

What is the energy threshold for deconfinement?

(the lowest energy sufficient to create a partonic system)

→ Motivation: Statistical Model of the Early Stage (SMES)

Gaździcki, Gorenstein, Acta Phys. Polon. B30, 2705 (1999)

Comprehensive scan in the whole SPS energy range (10A-158A GeV) with light and intermediate mass nuclei

First time in history when such a 2D scan (energy, system size) will be performed

K. Grebieszkow³⁶

Wyznaczany z
rozpadów
$$\beta 0^+ \rightarrow 0^+$$

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\ V_{cd} & V_{cs} & V_{cb}\\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\ s\\ b \end{pmatrix}$$

Macierz unitarną 3×3 można sparametryzować za pomocą $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0,9992 \pm 0,0011$ 3 parametrów (kątów Eulera) i jednej fazy (łamanie CP). $|V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 = 0,968 \pm 0,181$ (unitarność: V⁺V=1, V⁺ to macierz zespolona, sprzężona i transponowana względem V)

Ogromna rola fizyki jądrowej przy wyznaczaniu V_{ud}!

New Q_{EC}-values, V_{ud} and unitarity test

PHYSICAL REVIEW C 79, 055502 (2009)

Superallowed $0^+ \rightarrow 0^+$ nuclear β decays: A new survey with precision tests of the conserved vector current hypothesis and the standard model

J. C. Hardy^{*} and I. S. Towner Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA (Received 5 December 2008; published 26 May 2009)

> Unitarity of CKM matrix top-row: $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2$ = 0.99995±0.00061

Current results—in agreement with the SM—place important constraints on candidates for the New Standard Model, including supersymmetry,

The next step is to work on theoretical corrections

- more experiments on heavier nuclei for δ_{c}
- more theory on radiative corrections

J. Aysto, Piaski 2009

produced matter is thermalized?

Strange Particle Production at SIS18

- HADES,
- <u>Ar+KCl at 1.76 GeV/u</u>

p π Λ K^{*} K⁰_s ω K^{*} φ Ξ^{*} HADES collab.: arXiv:0907.3582 and <u>arXiv:0902.3487</u>

- FOPI (P. Gasik CPOD 2009),
- Al+Al at 2 GeV/u

Statistical Model:

THERMUS, S. Wheaton and J. Cleymans, hep-ph/0407174 Transport:

UrQMD, M. Bleicher, S. Vogel at al.

- 1. FAIR-przypomnienie
- 2. XXXI Mazurian Lakes Conference *Nuclear Physics and the Road to FAIR*
- a) QCD i materia hadronowa
- b) Antyprotony

FAIR

- c) Egzotyka jądrowa i jej struktury
- 3. FAIR-aktualności

Polarized Antiprotons: Motivation

Summary

Transversity: unknown piece of partonic structure of nucleon Direct access to "transversity" in Drell Yan

PRL 103, 072002 (2009)

experimental difficulties have challenged the most promising ones. In particular, the measurement of double spin asymmetries in the Drell-Yan process will have to wait for a polarized antiproton facility [3].

PAX

Need beam of polarized antiprotons !!

In Search of a Method to Polarize Antiprotons

Eur. Phys. J. A 34, 447–461 (2007) DOI 10.1140/epja/i2007-10462-x PHYSICAL JOURNAL A

Special Article – Tools for Experiment and Theory

A surprising method for polarising antiprotons

Th. Walcher^{1,2,a}, H. Arenhövel¹, K. Aulenbacher¹, R. Barday¹, and A. Jankowiak¹

¹ Institut f
ür Kernphysik, Johannes Gutenberg-Universit
ät Mainz, D-55000 Mainz, Germany

² Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati (Rome), Italy

Received: 26 June 2007 / Revised: 11 January 2008 Published online: 6 February 2008 – © Società Italiana di Fisica / Springer-Verlag 2008 Communicated by E. De Sanctis

Abstract. We propose a method for polarising antiprotons in a storage ring by means of a polarised positron beam moving parallel to the antiprotons. If the relative velocity is adjusted to $v/c \approx 0.002$ the cross-section for spin-flip is as large as about $2 \cdot 10^{13}$ harm as shown by new QED calculations of the triple spin cross-

QED-calculation predicts $\sigma > 10^{13}$ b !!!

In Search of a Method to Polarize Antiprotons

Spin flip – Test (at COSY)

Are polarized protons depolarized by an electron beam ?

Spin flip – Test (at COSY)

Result: NO effect observed

Spin filtering (SF)

Repeated interaction of the beam with a polarized target in a storage ring:

In-situ polarization build-up (at the expense of beam intensity)

H. Ströher

Now and here or never !

Z⁺ (4430) - a new state of matter (tetraquark?) decaying into $\pi^+\psi'$

U. Wiedner

PRL 100, 142001 (2008) arXiv:0708.1790 [hep-ex]

BEPC II Storage Ring: Large angle, double-ring

Institute of High Energy Physics, Bejing 1000 pracowników (650 fizyków i inżynierów) 400 doktorantów i postdoc-ów

Beam energy: 1.0-2.3 GeV Luminosity: 1×10³³ cm⁻²s⁻¹ Optimum energy: 1.89 GeV Energy spread: 5×10⁻⁴ No. of bunches: 93 Bunch length: 1.5 cm Total current: 0.91 A

W. Kühn

The Milestones	5
----------------	---

January 2004	Construction started
May. 4, 2004	Dismount of 8 linac sections started
Dec. 1, 2004	Linac delivered e ⁻ beams for BEPC
July 4, 2005	BEPC ring dismount started
Mar. 2, 2006	BEPCII ring installation started
Nov. 13, 2006	Phase 1 commissioning started
Nov. 13, 2006 Aug. 3, 2007	Phase 1 commissioning started Shutdown for installation of IR-SCQ's
Nov. 13, 2006 Aug. 3, 2007 Oct. 24, 2007	Phase 1 commissioning started Shutdown for installation of IR-SCQ's Phase 2 commissioning started
Nov. 13, 2006 Aug. 3, 2007 Oct. 24, 2007 Mar.28, 2008	Phase 1 commissioning started Shutdown for installation of IR-SCQ's Phase 2 commissioning started Shutdown for installation of detector

W. Kühn

BESIII Detector

The detector is hermetic for neutral and charged particles and has excellent resolution and PID

W. Kühn

W. Kühn

Summary

- A new facility for Charm/Tau physics went successfully into operation
- Huge amounts of J/Psi and J/Psi(2s) and D mesons can be produced
 - Precision physics with the potential for standard model tests
 - Light meson spectroscopy, search for exotica in charmonium decays (glue-rich environment)
 - Charmonium spectroscopy
 - Ideal experiment for those who cannot wait and want to do physics now while they are building PANDA
 - New members welcome !

or alternatively

extra mass due to large binding energy

gluon-gluon interaction

gravity might be stronger than we think for these systems

graviton-graviton interaction

Dark energy pushes galaxies away from each other

or alternatively

at very large distances the total force is smaller than we think

outside hadrons no strong force due to gluons, except residual effects

log(M)=c log(J)+b (c=0.5) (M, hadron mass, J angular momentum) $\log(M) = \gamma \log(v) + \varepsilon (\gamma = 3.9 \pm 0.2, \varepsilon \sim 1.5)$ (M galaxy visible mass, v rotation speed)

(not explained by dark matter models)

U. Wiedner

- 1. FAIR-przypomnienie
- 2. XXXI Mazurian Lakes Conference *Nuclear Physics and the Road to FAIR*
- a) QCD i materia hadronowa
- b) Antyprotony

FAIR

- c) Egzotyka jądrowa i jej struktury
- 3. FAIR-aktualności

J. Dobaczewski

J. Dobaczewski

J. Dobaczewski

Day One Working Group

Feb. 2007~ (Just after the 1st PAC)

Mission

Coordinate DayOne experiments

to be performed efficiently with maximum output

Simple (exp., analysis) Large impact Ready to run

Exchange information among Experimenters Accelerator BigRIPS teams

⁴⁸Ca+Be Secondary Beam Production Present Previous

	(BigRIPS)	(RIPS)
^{22}C	10 cps	6 mcps
³⁰ Ne	300 cps	0.2 cps
³¹ Ne	10 cps	20 c/4days
32.		

³²Ne 5 cps <u>⁴²Si 15 cps</u>

- $\sigma_{\rm I}(^{28-32}{\rm Ne} + {\rm C target})$ at 250 MeV/u with BigRIPS
 - $\sigma_{\rm I}$ enhancement at island of inversion especially for ³¹Ne

Milestones

=== 2006 === Dec. 28th First Beam ²⁷Al¹⁰⁺ 345 MeV/u at RIBF-SRC

===2007===

Feb BigRIPS construction completed

Mar

- 12th ⁸⁶Kr³¹⁺ beam at 345 MeV/u several pnA.
- 13th First RI Production with ⁸⁶Kr beam
- 23rd First successful acceleration of ²³⁸U⁸⁶⁺ beam (0.002 pnA)
- 27th First RI production with ²³⁸U fission

May

16th ²³⁸U beam 0.02 pnA \rightarrow ¹²⁵Pd, ¹²⁶Pd production

=== 2008 ===

Nov ZeroDegree Commissioning $\frac{2^{38}\text{U} \text{ beam } 0.3 \text{ pnA}}{238} \rightarrow 20 \text{ new isotopes}$ Dec 180pnA ⁴⁸Ca \rightarrow DayOne experiments

=== 2009 === Mar/May SHARAQ commissioning

How does the ordering of quantum states alter?

Relativistic energy beams => huge reduction of Doppler broadening

Z. Podolyak

Nuclear Charge Radii of Light Halo Nuclei

Wilfried Nörtershäuser

http://www.kernchemie.uni-mainz.de/laser/

^{6,8}He - Results

Courtesy of P. Mueller

P. Mueller L.-B. Wang

Experimental Storage Ring

J. Kurcewicz

The ESR: 108m, 10⁻¹¹ mbar, 2 MHz, E= 400 MeV/u, electron- stochastic- cooling

¹⁴⁰Pr⁵⁸⁺ all runs: 2650 EC decays from 7102 injections

Yu.A. Litvinov, F. Bosch, N. Winckler et al., Phys. Lett. B 664 (2008) 162-168

Yu.A. Litvinov, F. Bosch, N. Winckler et al., Phys. Lett. B 664 (2008) 162-168

J. Kurcewicz

Mazurian Lakes Conference on Physics

XXXI Mazurian Lakes Conference on Physics NUCLEAR PHYSICS and the Road to Fair August 30 – September 6, 2009 PIASKI Poland

Przegląd wyników analiz teoretycznych oraz rezultatów eksperymentalnych (RHIC/BNL, SPS (NA49/SHINE)/CERN, HERA/DESY, (HADES, FOPI, ESR) SIS18/GSI, BES3/BEPCII, COSY Jülich, RIBF, LNS Catania, AD/CERN, U400M/Dubna, HRIBF Oak Ridge, TRIUMF, Argonne, GANIL, ISOLDE/CERN)

Na wyniki doświadczalne z FAIR trzeba poczekać ...

- 1. FAIR-przypomnienie
- 2. XXXI Mazurian Lakes Conference Nuclear Physics and the Road to FAIR
- a) QCD i materia hadronowa
- b) Antyprotony

FAIR

- c) Egzotyka jądrowa i jej struktury
- 3. FAIR-aktualności

FAIR - Facility for Antiproton and Ion Research

White Paper The Modularized Start Version

October 2009

... the revised civil construction costs, which increased by 290 M€ from 282 M€ to 572 M€ ...

For this purpose the start version as agreed upon in 2007 is now structured in six modules:

Module 0:	Heavy-Ion Synchrotron SIS100 – basis and core facility of FAIR – required for all science programmes
Module 1:	CBM/HADES cave, experimental hall for APPA and detector calibrations
Module 2:	Super-FRS for NuSTAR
Module 3:	Antiproton facility for PANDA, providing further options also for
	NuSTAR ring physics
Module 4:	Second cave for NuSTAR, NESR storage ring for NuSTAR and
	APPA, building for antimatter programme FLAIR
Module 5:	RESR storage ring for higher beam intensity for PANDA and
	parallel operation with NuSTAR

Based on recent cost estimates and the firm commitments on funding of FAIR Member States the new Start Version is comprised of Modules 0 - 1 - 2 - 3, in the following called the Modularized Start Version.

0 - 1 - 2 - 3

Module configurations	Explanations	Goals and challenges	Scientific users
Module 0 SIS100 with connection to	Central accelerator unit, used by all science programmes	Novel accelerator technologies (e.g. fast- ramping	all research programmes
existing GSI accelerators		superconducting magnets, compact broad band radio-frequency resonators, XHV,)	Total number ~2500
Module 1 Experimental areas	Buildings housing the CBM/HADES detectors and experiment set-ups	Experiments on dense, strongly correlated nuclear matter with	500 HADES/CBM 660 APPA
	for atomic physics, BIOMAT, and high- energy experiments (APPA)	CBM/HADES; high- energy atomic physics, plasma, materials science, and bio (medical) science (ESA reference lab)	1,160 Total
Module 2 Super-FRS (without CR)	Central NUSTAR instrument: RIB generation and isotope separator with one fixed- target branch and ring branch	Radioactive ion beams (RIB); nuclear structure and reactions, nuclear astrophysics	840 NUSTAR
Module 3 High-energy antiprotons (p-linac, anti- proton target, CR, HESR)	Generation and preparation of intense antiproton beams with the HESR for PANDA	Hadron physics and QCD with antiprotons with HESR/PANDA; cooled precision beams, hypermatter nuclei	420 PANDA

4 – 5

Module configurations	Explanations	Goals and challenges	Scientific users
Module 4 Low-energy RIBs and antiprotons	NESR ring with hall; FLAIR hall and second fixed-target area for NuSTAR	Experiment stations for decelerated highly- charged ions for APPA and low-energy antiproton programme (FLAIR), Electron cooled RIBs for NUSTAR	660 APPA 840 NUSTAR Total 1,500
Module 5 RESR storage ring	Parallel operation of NuSTAR and APPA with PANDA, increased intensity of antiproton beam	Full parallel operation mode; maximum luminosity for PANDA	840 NUSTAR 420 PANDA 660 APPA 1,920 Total

Figure 1: The FAIR Modularized Start Version. Colouring of modules: 0 – green; 1 – red; 2 – yellow; 3 – orange. The Modules 4 and 5 are not marked in colour. Not shown is the additional experimental area above ground, which is part of Module 1. On the left hand side of the figure, the existing GSI facility is shown.

Harmonogram

- **0 SIS100**
- **1 CBM/HADES + APPA**
- 2 SuperFRS

3 – PANDA

The roadmap for the accelerator and civil construction is shown in the following table:

Module	Construction time (months)	Start of construction	Readiness for operation
0	72	2010 / 11	2015 / 16
1	28	2010 / 11	2015 / 16
2	60	2012	2016
3	60	2012	2016

Firm commitments from the FAIR partners (in k€)

5.000 12.000 5.000 27.000 705.000

8.000 4.000 36.000 42.000 23.740 11.870 178.050 12.000 6.000 19.000 10.000

1.104.660 1.038.660

Prezes Rady Ministrów		
INSTRUKCIA NEGOCIACYJNA	FAIR Countries	Contribution
	Austria	5.00
	China	12.00
	Finland	5.00
	France	27.00
	Germany	705.00
	Great Britain	8.00
	Greece	4.00
	India	36.00
	Italy	42.00
Ampleia Caudurializati 12Mauria (IX 2000) Poland		23.74
Alabia Saudyjska: Izmeuro (IX 2009)	Romania	11.87
	Russia	178.05
Slove Slove	Slovenia	12.00
	Slovakia	6.00
	Spain	19.00
Swe Tota	Sweden	10.00
	Total	1.104.66
Firm		1.038.66
	Commitments	
		not firm for the first
		batch

Arabia Saudyjska w FAIR

