Badanie rozpadu β⁸He przy użyciu detektora OTPC

Sławek Mianowski

IFD ZSJ

Uniwersytet Warszawski

Motywacja badań:

one-neutron halo

- jądro niezwykle egzotyczne, N/Z = 3
- niejasna struktura halo/skóry neutronowej
- weryfikacja modeli teoretycznych
- źródło tła w eksperymentach neutrinowych
- wiele niewiadomych w rozpadzie β ...

Schemat rozpadu ⁸He

D. R. Tilley et. all, Nucl. Phys. A 745 (2004)

Produkcja ⁸He w Acculinna

Optical Time Projection Chamber

K. Miernik et al., NIM A581 (2007) 194

GEM

Typowo:

- 5 μ m Cu na 50 μ m kaptonu
- otwory: φ =70 µm, d=70 µm

Zalety:

- niższe napięcia zasilania
- mniej wyładowań (nie eliminują zdarzeń!)
- wyższe wzmocnienia
- większy zakres dynamiczny

F. Sauli, Nucl. Instrum. Methods A386(1997)531

W. Dominik, seminarium SJA, 19.11.2008

Optical Time Projection Chamber

Idea rekonstrukcji przypadków

Procedura rekonstrukcji zdarzeń

- generujemy krzywe Bethego-Blocha → SRIM
- rzutujemy krzywe B-B na płaszczyznę XY (dla CCD) oraz na oś Z (dla PMT), np. dla PMT...

- uwzględniamy dyfuzję elektronów
- uwzględniamy funkcję odpowiedzi detektora

- sumujemy funkcje oraz normujemy
- porównujemy doświadczenie z wynikiem obliczeń metoda najmniejszych kwadratów

Rozpad βn w ⁸He – identyfikacja ⁷Li

Rekonstrukcja przypadków

Rozpad ßt w ⁸He

Rekonstrukcja przypadków

Rozpad ⁸He do stanu związanego ⁸Li

Rozpad ⁸He do stanu związanego ⁸Li

~20 przypadków 2
a (!?!) / ~500 przypadków (13 h)

Przypadki z jedną cząstką naładowaną

Rozkład czasowy – jedna cząstka naładowana

Rozpad ⁸He do stanu związanego ⁸Li, cd ...

Dryf i rozpad ⁸Li na katodzie

Prędkość dryfu ⁷Li⁺ w gazie

T H Løvaas, H R Skullerud, O-H Kristensen and D Linhjell

Research Group of Ion and Electron Physics, Department of Applied Physics, Norwegian Institute of Technology, N-7034 Trondheim, Norway

Received 28 January 1987

Plany...

 $20 cm \rightarrow 35 cm$

Plany...

- 2. Eksperyment na przełomie stycznia/lutego 2010 Dubna.
 - optymalizacja optyki separatora Accullinna (wyd. 3x)

Przewidywana statystyka zdarzeń

Kanał rozpadu	Rozgałęzienie	Spodziewana l. cząstek ^a
⁷ Li+n	0.16	1100/godzinę
$t+\alpha+n$	0.008	1300/dzień
⁶ He+d	1x10 ⁻⁵ (?)	20/tydzień (?)
⁶ Li+2n	1x10 ⁻⁵	20/tydzień

a: przy oknie ekspozycji 500 ms

Podsumowanie

- komora OTPC jest użytecznym narzędziem do badania rozpadu β ^8He
- zidentyfikowano emisję neutronu z wysoko-wzbudzonego stanu ⁸Li
- zarejestrowano i zrekonstruowano rozpad βt ⁸He
- nowy eksperyment \rightarrow Dubna, I/II 2010 r.

Współpraca

Faculty of Physic, University of Warsaw

<u>ZSJ:</u>	ZCiOF:
Z. Janas K. Miernik M. Pfützner S. M.	W. Dominik H. Czyrkowski

Joint Institute for Nuclear Research, Dubna

S.I. Sidorchuk
R.S. Slepniev
S.V. Stepantsov
G.M. Ter-Akopian