

Współpraca n_TOF – osiągnięcia i plany

Józef Andrzejewski

Zakład Fizyki Jądrowej Uniwersytet Łódzki

UW, 4.11.2009

Widok magnesu "wymiatającego" naładowane cząstki lecące razem z neutronami

n_TOF basic parameters

proton beam momentum	20 GeV/c
intensity (dedicated mode)	7 x 10 ¹² protons/pulse
repetition frequency	1 pulse/2.4s
pulse width	6 ns (rms)
n/p	300
lead target dimensions	80x80x60 cm ³
cooling & moderation material	H ₂ O
moderator thickness in the exit face	5 cm
neutron beam dimension in EAR-1 (capture mode)	2 cm (FWHM)

Eksperymenty n_TOF w latach 2002- 2004

- Pomiary neutronowych przekrojów czynnych istotnych dla transmutacji odpadów jądrowych i technologii jądrowych
 - Th/U cykl paliwowy (wychwyt & rozszczepienie)
 - transmutacja MA (wychwyt & rozszczepienie)
 - transmutacja PR (wychwyt)
- Przekroje czynne istotne dla astrofizyki jądrowej
 - proces s: rozgałęzienia ($\lambda_{\beta} \approx \lambda_{(n,\gamma)}$)
 - proces s: ziarna z początków Układu Słonecznego
 - Proces *p*: metoda resztkowa
- Neutrony jako sondy w badaniach podstawowych fizyki jądrowej
 - gęstość poziomów jądrowych & oddziaływania n-jądro
 - fotonowa funkcja nasilenia

Eksperymenty n_TOF, 2002-4

zakończona analiza danych, wyniki opublikowane zakończona analiza danych, publikacje

przygotowywane

kontynuacja analizy danych

^{204,206,207}Pb

Pomiary rezonansów w bardzo szerokim przedziale energii neutronów.

Bardzo dokładne określenie szerokości rezonansów neutronowych.

Dla niskich energii neutronów występuje zgodność wyników z poprzednimi pomiarami. C. Domingo-Pardo, *et al.* 4 artykuły opublikowane w Phys. Rev. C **74, 75,** 76, 77 (2006-2007)

E_{low}	E_{high}	Cross section	Statistical uncertainty ^a
(keV)	(keV)	(barn)	(%)
88.210	92.404	0.059	9
92.404	96.748	0.059	5
96.748	101.406	0.058	11
101.406	106.408	0.057	8
106.408	111.790	0.057	7
111.790	117.591	0.056	8
117.591	123.855	0.056	7
123.855	130.634	0.055	7
130.634	137.985	0.054	6
137.985	145.974	0.054	6
145.974	154.678	0.053	6
154.678	164.185	0.053	7
164.185	174.596	0.052	7
174.596	186.030	0.051	6
186.030	198.625	0.051	5
198.625	212.544	0.050	5
212.544	227.981	0.049	5
227.981	245.162	0.049	5
245.162	264.363	0.048	4
264.363	285.911	0.047	4
285.911	310.207	0.046	4
310.207	337.739	0.046	4
337.739	369.107	0.045	4
369.107	405.060	0.044	4
405.060	443.512	0.043	3

TABLE IV: Average neutron capture cross section for ²⁰⁴Pb.

- This work ²⁰⁴Pb 300 Bao et al. MACS (mbarn) 250 200 150 100 50 30 20 40 50 10 Thermal energy (keV)

TABLE II: Resonance parameters and radiative kernels from the analysis of the ${}^{207}\text{Pb}(n,\gamma)$ data measured at n_TOF^{*a*}.

E_{\circ}	l	J	Γ_n	Γ_{γ}	$g\Gamma_{\gamma}\Gamma_n/\Gamma$
(eV)			(meV)	(meV)	(meV)
3064.700(3)	1	2	111.0(8)	145.0(9)	78.6(9)
10190.80(4)	1	2	656(50)	145.2(12)	149(14)
16172.80(10)	1	2	1395(126)	275(3)	287(30)
29396.1	1	2	16000	189(7)	234(9)
30485.9(5)	1	1	608(45)	592(50)	225(30)
37751(3)	1	1	50×10^{3}	843(40)	620(30)
41149(46)	0	1	1.220×10^{6}	3970(160)	2970(120)
48410(2)	1	2	1000	230(20)	235(20)
82990(12)	1	2	29×10^{3}	360(30)	444(30)
90228(24)	1	1	272×10^{3}	1615(100)	1200(80)
127900	1	1	613×10^{3}	1939(150)	1449(120)
130230	1	1	87×10^{3}	900(80)	675(60)
181510(6)	0	1	57.3×10^{3}	14709(500)	8780(300)
254440	2	3	111×10^{3}	1219(90)	2110(150)
256430	0	1	1.66×10^{6}	12740(380)	9482(280)
317000	0	1	850×10^{3}	10967(480)	8120(350)

^{*a*}Orbital angular momenta l and resonance spins J are from

¹⁵¹Sm(n,γ)

U Abbondanno *et al.* Phys. Rev. Lett. **93** (2004), 161103 S Marrone *et al.* Phys. Rev. C 73 03604 (2006)

 $<D_0> = 1.49 \pm 0.07 \text{ eV}$ $S_0 = (3.87 \pm 0.33) \times 10^{-4}$ $R_1 = 3575 \pm 210 \text{ mb}$ uśredniony przekrój czynny zmierzony do energii 1 MeV

 10^{4}

NEUTRON ENERGY (eV)

10

10

 10^{-2}

CROSS SECTION (b)

n TOF

FZK

105

Correction

JEFF-3.1

Energy bin	$\sigma_{(n,\gamma)}$	Uncertainty (%)			
(keV)	(b)	Stat.	Syst.	Tot.	
1-1.2	24.52	0.8	4.4	4.5	
1.2-1.5	23.68	0.8	4.3	4.4	
1.5-1.75	21.94	1.0	4.2	4.3	
1.75-2	19.76	1.2	4.2	4.3	
2-2.5	15.43	1.1	4.1	4.3	
2.5-3	15.36	1.3	4.1	4.3	
3-4	12.78	1.2	4.1	4.3	
4-5	10.04	1.4	4.1	4.3	
5-7.5	8.91	2.1	2.9	3.6	
7.5-10	5.85	3.0	3.1	4.3	
10-12.5	5.38	3.9	2.9	4.8	
12.5-15	4.26	4.9	3.2	5.8	
15-20	3.82	3.8	3.2	4.9	
20-25	3.52	4.6	3.5	5.8	
25-30	3.13	4.5	3.1	5.5	
30-40	2.69	4.4	3.2	5.5	
40-50	2.17	4.8	3.4	5.9	
50-60	1.90	5.2	3.3	6.2	
60-80	1.66	4.1	3.6	5.5	
80-100	1.30	5.1	4.6	6.9	

TABLE IX. The ${}^{151}\text{Sm}(n,\gamma)$ cross section in the unresolved resonance region from 1 keV to 1 MeV.

²³²Th

F. Gunsing et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – Sept. 2004 & G. Aerts et al. (The n_TOF Collaboration) Phys. Rev. C 73, 054610 (2006)

analiza rozdzielonych rezonansów w toku

Najważniejsze daty w poznawaniu nukleosyntezy

- **1937** pierwsze systematyczne przedstawienie rozpowszechnienia pierwiastków w układzie słonecznym podane przez Goldschmidta
- **1937 39** łańcuch pp i cykl CNO zidentyfikowane przez Bethe & Critchfielda oraz przez Weizsäckera, jako źródła gwiezdnej energii
- **1952** odkrycie **Tc** przez Merrilla w Czerwonych Olbrzymach: potwierdzenie występowania syntezy w gwiazdach
- 1957 podstawowa publikacja dotycząca nukleosyntezy autorstwa: Burbidge, Burbidge, Fowler & Hoyle (B²FH) Rev. Mod. Phys. 29, 547 (1957)

Istnieje kilka sposobów określenia wieku wszechświata:

- kosmologiczny (oparty na definicji czasu Hubbla, $13,9 \pm 1,5$ Gy)
- astronomiczny (oparty na obserwacji gromad kulistych, 14 ± 2 Gy)
- jądrowy (w oparciu o względne rozpowszechnienie izotopów promieniotwórczych o bardzo długim czasie półrozpadu - U/Th, 14,5 ± 2,5 Gy)

Wiek wszechświata można także określić za pomocą zegara ¹⁸⁷Re/¹⁸⁷Os.

Rozpowszechnienie pierwiastków

Od Fe do U: procesy s i r

Zegar Re/Os

Os	Os 184 _{0.02}	Os 185 _{94 d}	Os 186 1.58	Os 187 ^{1,6}	Os 188 ^{13.3}	Os 189 16.1	Os 190 26.4	Os 191 15.4 d	Os 1 41
Re	Re 183	Re 184 ^{38 d}	Re 185 37.4	Re 186 _{90.64 h}	Re 187 62 6 42.3x10 ⁹ a	Re 188 16.98 h	Re 189 24.3 h	Re 190 _{3.1 m}	
W	W 182 26.3	W 183 14.3	W 184 30.67	W 185 _{75.1 d}	W 186 28.6	W 187 23.8 h	W 188 ^{69 d}		-

Rozpad β^{-187} Re o T_{1/2} = 42,3 Gyr wpływa na obfitość jądra pochodnego ¹⁸⁷Os.

Dla analizy zegara Re/Os istotnymi danymi jądrowymi są:

1. gwiezdne przekroje czynne typu (n, γ)

na gwiezdny przekrój czynny reakcji ¹⁸⁷Os(n, γ) duży wpływ mają wzbudzone, nisko leżące stany jądrowe \rightarrow silnie obsadzany 1-szy stan o energii 9,8 keV (w wyniku nieelastycznego rozpraszania neutronów)

2. temperaturowa zależność czasu półrozpadu ¹⁸⁷Re

(T_{1/2} rozpadu β tego jądra bardzo silnie zależy od temperatury gwiazdy)

 Λ - oznacza stałą zmniejszania się liczby supernowych we wszechświecie (w Galaktyce)

ciągła synteza: $\Lambda \rightarrow 0$ jednorazowa synteza : $\Lambda \rightarrow \infty$

Pomiary przekroju czynnego reakcji Os(n,γ) przeprowadzone przez n_TOF/CERN

10

czułością na wychwyt radiacyjny neutronów.

NEUTRON ENERGY (eV)

Uśrednione przekroje czynne reakcji (n, γ) - n_TOF

HF – na podstawie statystycznego modelu Hausera-Feshbacha

Zegar wymaga regulacji

Zegar Re/Os \Rightarrow poprawki na efekty: jądrowy i gwiezdny.

Przemiana zjonizowanego ¹⁸⁷Re

- Zabieramy wszystkie elektrony orbitalne.
- Zwykła przemiana β nie jest teraz możliwa !
- Ale emitowany elektron może zatrzymać się na pustym orbitalu atomowym !

Uwzględnienie tego faktu wpływa na wiek : ≈ 1 Gyr

Ostatecznie:

t₀ \cong 10,4 \pm 2,0 Gyr ↓

wiek wszechświata = 15 ± 2 Gyr

Podsumowanie osiągnięć pierwszej fazy n_TOF

- n_TOF jest dobrze funkcjonującą współpracą; przeprowadzono dotąd 18 eksperymentów obejmujących pomiar przekrojów czynnych na wychwyt radiacyjny neutronów i rozszczepienie wywołane przez neutrony.
- n_TOF zbudował kilka detektorów (SiMon, C₆D₆, TAC, PPAC, FIC) oraz nowoczesny system DAQ w oparciu o Flash-ADC.
- Publikacje: 1 Phys. Rev. Lett., 12 Phys. Rev. C, 1 Prog. Nucl. Part. Phys., 10 NIM A, oraz 5-10 Conference Proceedings/rok.

patrz: <u>www.cern.ch/n_TOF</u> oraz **Postępy Fizyki**, z. 6 (2008)

Nowy target i pierwszy element osłony

Eksperymenty n_TOF : Ph-2

Wychwyt radiacyjny neutronów	1.	Przekroje czynne ważne dla astrofizyki jądrowej
R ozszczepienie	2.	Przekroje czynne ważne dla transmutacji popiołów jądrowych i technologii jądrowych
(n,p) (n,α) Detektory gazowe 	3.	Neutrony jako sondy w badaniach podstawowych fizyki jądrowej

Eksperymenty n_TOF-Ph2 (od 2009 roku)

Pomiary wychwytu radiacyjnego neutronów				
Mo, Ru, Pd (izotopy stabilne)	wkład procesu <i>r</i> , izotopowe szablony w ziarnach SiC			
Fe, Ni, Zn, and Se (izotopy stabilne) ⁷⁹ Se	proces s nukleosyntezy w masywnych gwiazdach dane jądrowe dla materiałów konstrukcyjnych			
A≈150 (różne izotopy) ^{234,236} U. ^{231,233} Pa	proces s w punktach rozgałęzienia produkty rozszczepienia o długim czasie półrozpadu			
235,238U	Th/U jądrowy cykl paliwowy			
^{239,240,242} Pu, ^{241,243} Am, ²⁴⁵ Cm	standardy, klasyczny U/Pu cykl paliwowy			
	wypalanie mniejszościowych aktynowców			

(*) zatwierdzone przes CERN Isolde-n_TOF Committee, wykonanie w 2009

Eksperymenty n_TOF-Ph2

Przekroje na rozszczepienie				
MA	ADS, intensywne wypalanie, reaktory GEN-IV			
²³⁵ U(n,f)	²³⁵ U(n,f) przekrój czynny – nowy standard			
²³⁴ U(n,f)	badanie rezonansów przy energii bariery rozszczepienia			
Inne przekroje czynne				
¹⁴⁷ Sm(n,α), ⁶⁷ Zn(n,α), ⁹⁹ Ru(n,α) ⁵⁸ Ni(n,p)	badania procesu <i>p</i> produkcja gazu w materiałach konstrukcyjnych			
AI, V, Cr, Zr, Th,	materiały paliwa i konstrukcyjne dla ADS i innych zaawansowanych reaktorów jądrowych			
He, Ne, Ar, Xe	nisko energetyczne jądra odrzutu (rozwój detektorów gazowych)			
n+D ₂	badanie rozproszeń n-n			

Drugi neutronowód n_TOF oraz EAR-2

Długość drogi przelotu : ~ 20 m pod kątem 90° względem kierunku wiązki protonów. Spodziewany wzrost strumienia neutronów: ~ 100. Drastyczna redukcja intensywności "błysku" w chwili t_0 .

The n_TOF Collaboration

