Przemiana beta ⁴³Cr

Marcin Pomorski Zakład Spektroskopii Jądrowej Wydział Fizyki UW

O czym będę mówił

- Emisja opóźnionych protonów przypomnienie podstawowych informacji.
- Przypadek ⁴³Cr.
- Komora OTPC (po raz kolejny).
- Eksperyment czyli jak to chrom w parze z żelazem chadza.
- Analiza, czyli 40 000 kliknięć jądrowych podróży.
- Wyniki, czyli o pożytku z danych kalibracyjnych.
- Podsumowanie

Przejścia β daleko od ścieżki stabilności

- Dla jąder neutronodeficytowych leżących daleko od ścieżki stabilności energia dostępna w przejściu β jest duża (dla ⁴³Cr ~16 MeV).
- Jednocześnie energia separacji protonu jest mała (dla ⁴³V ~ 0.2 MeV).
- W takiej sytuacji
 obserwujemy emisje
 protonów po rozpadach β.

								52 CU p?	53 СЦ р?	54 CU p?
					48 NI 2p?	49 ΝΙ β*=100%	<mark>60 ΝΙ</mark> β⁺?	<mark>61 ΝΙ</mark> β†?	62 ΝΙ β*=100%	63 ΝΙ β*=100%
					47 C o p?	48 CO p?	49 CD p?	50 CO β* =100%	51 CO β*?	52 CO β*=100%
				45 FC 2p=75%	46 FC β ⁺ =100%	47 FC β ⁺ =100%	48 FC β ⁺ =100%	49 FC β ⁺ =100%	<mark>50 FC</mark> β ⁺ =100%	<mark>51 FC</mark> β*=100%
				44 Mn p?	45 Mn p?	46 M Π β*=100%	47 Mn β*=100%	48 ΜΠ β* =100%	49 ΝΒ β*=100%	50 M η β*=100%
			42 Cr β⁺≈100%	43 Cr β*=100%	44 Cr β*=100%	45 Cr β*=100%	46 Cr β*=100%	47 Cr β* =100%	48 Cr β*=100%	49 Cr β+=100%
		40 V p?	41 V p?	42 V p?	43 γ β*?	44 γ β*=100%	45 γ β*=100%	46 γ β*=100%	47 γ β*=100%	48 γ β*=100%
	<mark>зө ті</mark> 2p?	39 ΤΙ β*=100%	40 ΤΪ β*=100%	41 ΤΙ β*=100%	42 ΤΙ β*=100%	43 Τί β*=100%	44 Ti EC=100%	45 ΤΙ β* =100%	46 Ti Atundanca€.25%	47 Ti Abunderce=7,443
36 SC p?	87 SC p?	38 SC p?	89 SC p=100%	40 SC β* =100%	41 SC β*=100%	42 SC β ⁺ =100%	43 SC β*=100%	44 SC β* =100%	45 SC 4cundance=100.%	<mark>46 SC</mark> β⁻=100%
95 Ca β*=100%	9 5 Ca β*=100%	97 Ca β*=100%	<mark>эв са</mark> _{β*=100%}	39 Ca β*=100%	40 C a Nurao:80+%	41 Ca EC=100%	42 Ca Autor:1603	49 Са литго:0.13%	44 Ca Aurime-2089	45 Ca β ⁻ =100%
84 K p?	35 Κ β ⁺ =100%	36 Κ β+=100%	37 Κ β*=100%	38 Κ β+=100%	3:9 K Aurdana:=3325414	40 K Aurdane=101173	41 K Auntaro:61302%	42 χ β⁻=100%	43 Κ β ⁻ =100%	44 K β⁻=100%

Nucleus-Win 2.1 z bazą NUDAT (http://amdc.in2p3.fr/web/nubase_en.html)

emisja opóźnionych protonów krok po kroku

- Emisja opóźnionego protonu składa się z trzech etapów:
 -Rozpad beta
 - -Emisja protonu ze stanu wzbudzonego
 - -Emisja γ w jądrze końcowym.
- W zasadzie możliwa jest emisja większej liczby protonów lub innych cząstek. Warunkiem jest, aby energia wzbudzenia jądra emitera była większa niż energia separacji cząstki.

Schemat rozpadu ⁴³Cr

Przypadek ⁴³Cr

- Bardzo neutrono deficytowy izotop, o 9 neutronów uboższy niż najbliższy stabilny izotop Cr o liczbie masowej 52.
- Energia dostępna w rozpadzie β to 15.9 ± 0.2 MeV.

	44 Mi	45 MN	46 Mn	47 Mn	48 Mn	49 Mn	50 Mn	51 Mn	52 Mn	53 Mn	54 Mn
	p?	p?	β ⁺ =100%	β+=100%	β ⁺ =100%	β ⁺ =100%	β+=100%	β+=100%	β ⁺ =100%	EC=100%	EC=100%
42 Cr	43 Cr	44 Cr	45 Cr	46 Cr	47 Cr	48 Cr	49 Cr	50 Cr	51 Cr	52 Cr	53 Cr
β⁺≈100%	β+=100%	β ⁺ =100%	β ⁺ =100%	β+=100%	β+=100%	β ⁺ =100%	β+=100%	Abunlance=4,345%	EC=100%	Abundance:63,189%	Abundance:9:501%
41 V	42 V	43 γ	44 V	45 γ	46 γ	47 γ	48 γ	49 V	50 V	5-1 V	52 γ
p?	p?	β ⁺ ?	β ⁺ =100%	EC=100%	Abundance=0.250%	Abundance:99,150%	β⁻=100%				
40 Τί	41 Τί	42 Τί	43 Τί	44 Ti	45 ΤΙ	46 Ti	47 Ti	48 Ti	49 Ti	50 Ti	51 Ti
β ⁺ =100%	β ⁺ =100%	β ⁺ =100%	β ⁺ =100%	EC=100%	β ⁺ =100%	Abundance=8.25%	Abundance=7.44%	Abundance=13.12%	Abundance=5.41%	Abundance=5.18%	β⁻=100%
39 SC	40 SC	41 Sc	42 SC	43 SC	44 SC	45 SC	46 SC	47 SC	48 SC	49 SC	50 SC
p=100%	β ⁺ =100%	Abundance=100.%	β⁻=100%	β⁻=100%	β⁻=100%	β⁻=100%	β⁻=100%				
<mark>38 Ca</mark>	39 Ca	40 Ca	41 Ca	42 Ca	43 Ca	44 Ca	45 Ca	46 Ca	47 Ca	48 Ca	49 Ca
β*=100%	β ⁺ =100%	Abundance=96.941%	EC=100%	Abundance=0.647%	Abundanc=0.135%	Abundance=2,006%	β⁻=100%	Abundanc=0.004%	β ⁻ =100%	Abundance=0.187%	β ⁻ =100%

Dotychczasowe badania ⁴³Cr

- ⁴³Cr był badany w laboratorium GANIL od 1992 roku, a w 2007 roku ukazała się praca podsumowująca wyniki tych badań [1]. Badań tych dokonywano metodą implantacji jonów w krzemowym detektorze.
- Czas połowicznego zaniku ⁴³Cr wyznaczono jako 21.1±0.4 ms.
- Współczynnik rozgałęzienia dla przejść z emisją protonu ustalono na 92.5(28)%.
- Zidentyfikowano też przejście z emisją dwóch protonów (β2p).

Jak mierzono współczynniki rozgałęzienia:

 Współczynniki konkretnych przejść wyznaczono bezpośrednio ze widma energetycznego protonów.

 Całkowite prawdopodob. emisji protonu oszacowano na podstawie widm czasowych.

Zasada działania OTPC

- Naładowana cząstka jonizuje mieszankę gazu w detektorze.
- Swobodne elektrony z tego procesu dryfują ze stałą prędkością w kierunku siatek.
- W dalszej części komory następuje wzmocnienie sygnału poprzez mnożenie elektronów.
- Na koniec wysokoenergetyczne elektrony powodują emisję światła UV, konwertowanego w WLS na światło widzialne.

Konstrukcja OTPC

- Odczyt sygnału z komory następuje za pomocą kamery CCD i fotopowielacza.
- Układ zbierania danych zbierał też informację o identyfikacji i zapisywał wszystko na dysku twardym komputera PC.
- Do obsługi całego układu używano programu skonstruowanego w LabView.

M. Ćwiok et al., IEEE TNS, 52 (2005) 2895 K. Miernik et al., NIM A581 (2007) 194

K. Miernik et al., NIM A581 (2007) 194

Eksperyment w NSCL

- Eksperyment, gdzie zebrano dane o ⁴³Cr odbył się w National Superconducting Cyclotron Laboratory (NSCL) przy Michigan StateUniversity (MSU) w East Lensing, Michigan, USA w 2007 roku.
- W eksperymencie bombardowano tarczę Ni wiązką ⁵⁸Ni o energii 161 AMeV.
- Produkty były separowane w separatorze A1900.
- Układ akwizycji komory OTPC był tak ustawiony, aby rejestrować wszystkie przypadki ⁴⁵Fe i część przypadków ⁴³Cr.

Eksperyment w NSCL

Ekeneryment adzie zehrene dene e 43Cr odbył sie w

Zebrane dane

- Zdarzenia ⁴³Cr były zbierane głównie w celu monitorowania komory OTPC pomiędzy rzadkimi zdarzeniami ⁴⁵Fe.
- Z tego powodu rejestrowano tylko niewielką część wyprodukowanych jonów ⁴³Cr.
- Identyfikacja odbywała się metodą TOF-dE.
- Łącznie zarejestrowano około 40 000 zdarzeń ⁴³Cr.

K. Miernik et al. Eur.Phys.J.A 42,431-439(2009)

Zebrane dane

Tryb asynchroniczny

- Kamera CCD naświetlała 30 ms klatki w sposób ciągły.
- Oscyloskop również pracował w sposób ciągły.
- Jeżeli w trakcie naświetlania klatki przychodził sygnał identyfikacyjny, zdarzenie było zapisywane.
- W tym trybie widoczne były ślady ciężkich jonów, a komora była aktywna przez inny czas przy każdym zdarzeniu.

Czas [ms]

Tryb synchroniczny

- Układ czekał na sygnał potwierdzający identyfikację jonu.
- Po nadejściu sygnału element
 CCD był czyszczony i
 rozpoczynał naświetlanie przez
 25 ms.
- Jednocześnie oscyloskop
 rozpoczynał zapisywanie danych
 z fotopowielacza.
- W trybie tym niewidoczny był ślad ciężkiego jonu, a komora była aktywna przez 25 ms w każdym przypadku.

Kilka przykładów - 1p

p

3p

Duch chętny, ale ciało słabe... Czyli jak OTPC ustawione na ⁴⁵Fe radziło sobie z ⁴³Cr

Ponieważ komora OTPC przygotowana była do pomiarów innego nuklidu, warunki eksperymentu były nieoptymalne dla ⁴³Cr.

- Zdolność zatrzymująca gazu była tak dobrana, aby obserwować ślady od protonów z rozpadu ⁴⁵Fe o energii do 2 MeV. Protony o energii 2,5 MeV miały zasięg ponad 20 cm, a co za tym idzie opuszczały przestrzeń aktywną detektora.
- Czas naświetlania klatki (25 ms) był porównywalny z czasem połowicznego rozpadu ⁴³Cr (21 ms), co powodowało, że wiele rozpadów następowało po zakończeniu naświetlania klatki.

Analiza zebranych danych

- Analiza przeprowadzona była za pomocą programów skonstruowanych w LabView.
- Głównym celem było wyznaczenie współczynników rozgałęzienia dla ⁴³Cr w zależności od liczby emitowanych protonów.
- Wyznaczyłem też czas połowicznego rozpadu ⁴³Cr.

Czas życia ⁴³Cr

- Aby wyznaczyć czas życia ⁴³Cr wystarczyło odczytać z sygnału z oscyloskopu czas pomiędzy umieszczeniem jonu w komorze a rozpadem.
- Użyłem tutaj zdarzeń zebranych w trybie synchronicznym z emisją jednego protonu.
- Do zebranych czasów życia dopasowałem krzywą rozpadu, co pozwoliło wyznaczyć czas życia.

Histogram czasów życia ⁴³Cr

- Z dopasowania uzyskano wynik $T_{1/2} = 20.6 \pm 0.9$ ms.
- W pracy Dossat et al [1] określono czas życia jako

Współczynniki rozgałęzienia.

Wyznaczanie współczynników rozgałęzienia podzielone było na dwa etapy:

- W pierwszym etapie wyznaczyłem współczynniki względne – czyli określające jaki ułamek rozpadów z emisją dowolnej liczby protonów odbywa się z emisją 1p, 2p i 3p.
- W drugim etapie określiłem jaka cześć rozpadów ⁴³Cr odbywa się bez emisji protonów.

Akt pierwszy – współczynniki względne

- Współczynniki względne, czyli określające jaka część wszystkich rozpadów z emisją protonów zachodzi z emisją 1p, 2p i 3p.
- Aby je wyznaczyć wystarczyło określić dla każdego zdjęcia ile śladów jest na nim widocznych.
- W przypadku, kiedy zdjęcie nie dawało jednoznacznej informacji można było się posiłkować sygnałem z fotopowielacza.

2p po raz drugi

Czas

2p po raz drugi

Wartości względnych współczynników rozgałęzienia

- Do wyznaczenia współczynników rozgałęzienia użyłem tylko danych z trybu synchronicznego. Spowodowane to było brakiem śladu jonu, co upraszczało analizę.
- Po przeanalizowaniu wszystkich (~30 000) zdarzeń synchronicznych otrzymałem następujące wartości:

Liczba protonów	Współczynnik	niepewność
opóźnionych	rozgałęzienia [%]	[%]
1	92	± 2
2	8.0	± 0.1
3	0.09	± 0.02

Akt drugi – współczynnik rozgałęzienia dla rozpadów bez emisji protonów

W tym zagadnieniu mamy przed sobą dwa problemy:

- Jak odróżnić zdarzenia, w których komora została wyzwolona, ale jon nie pojawił się w komorze (na przykład zatrzymał się w okienku) od zdarzeń rozpadu beta bez emisji protonu?
- Jak uwzględnić fakt, że komora jest aktywna tylko przez krótki czas, a rozpad może nastąpić po zakończeniu naświetlania?

Drogocenny ślad jonu

- Pierwszy problem łatwo rozwiązać używając zdarzeń zebranych w trybie asynchronicznym, gdzie widoczny jest ślad jonu.
- Ale wtedy w każdym zdarzeniu mamy inny czas naświetlania!

Czym dysponujemy

- Potrafimy już odróżnić puste zdarzenia od tych, gdzie rozpad nie nastąpił w czasie aktywności komory, bądź nastąpił bez emisji protonów.
- Ale w każdym zdarzeniu komora jest aktywna przez inny czas, na ogół krótszy niż czas połowicznego rozpadu.
- Jesteśmy w stanie odczytać z sygnału z fotopowielacza jak długo w każdym przypadku komora jest aktywna (czas od implantacji jonu do zakończenia naświetlania) oraz kiedy nastąpił rozpad (czas życia).
- Co dalej?

Czym dysponujemy

Metoda największej wiarygodności

- Problem rozwiązuje użycie metody największej wiarygodności [2].
- Metoda ta daje jako estymatę poszukiwanej wartości najbardziej prawdopodobną wartość (w świetle uzyskanych wyników).
- Odbywa się to poprzez szukanie maksimum pewnej funkcji.
- Dokładniej...

Krok 1 – Budowa funkcji największej wiarygodności

• W naszym problemie mamy w każdym zdarzeniu dwie możliwości:

Zdjęcie przedstawia ślad jonu i protonów Zdjęcie przedstawia tylko ślad jonu

Prawdopodobieństwo obserwacji takich zdażeń to:

$$b_e \left[1 - \exp\left(-\lambda\tau\right)\right] \qquad \qquad \exp\left(-\lambda\tau\right) + b_{ne} \left[1 - \exp\left(-\lambda\tau\right)\right]$$

Gdzie: λ - stała rozpadu, τ - czas aktywności komory, b_e – prawdopodobieństwo rozpadu z emisją protonów, b_{ne} – prawdopodobieństwo rozpadu bez emisji protonu

 Funkcja największej wiarygodności jest iloczynem takich prawdopodobieństw dla wszystkich zarejestrowanych zdarzeń.

I wystarczy znaleźć maksimum...

... takiej prostej funkcji:

$$\mathscr{L} = \prod_{i=0}^{N_e} \left\{ b_e \left[1 - \exp\left(-\lambda\tau^i\right) \right] \right\} \prod_{j=0}^{N_{ne}} \left\{ \exp\left(-\lambda\tau^j\right) + (1 - b_e) \left[1 - \exp\left(-\lambda\tau^j\right) \right] \right\} ,$$

gdzie mnożenie odbywają się po wszystkich zaobserwowanych, czytelnych zdarzeniach ⁴³Cr w trybie asynchronicznym. b_e jest tutaj swobodnym parametrem i względem niego szukamy maksimum *Q*.

- Wartość b_e dla maksimum *Q* jest szukaną przez nas estymatą.
- W naszym wypadku iloczyn ma około 1500 czynników.

Ufff... nareszcie wynik

- Czasy aktywności komory OTPC można względnie łatwo uzyskać w sposób automatyczny z zapisu sygnału z fotopowielacza.
- Po zastosowaniu metody największej wiarygodności uzyskałem wyniki:

Liczba emito-	Współczyn-	Niepewność [%]	Wyniki [1] [%]	
wanych proto-	nik roz-			
nów	gałęzienia			
	[%]			
0	26	± 2	7.5(3)	
1	68	± 2	$28(1)^*$	
2	5.9	± 0.6	5.6(7)	
3	0.07	± 0.02	-	

Prosta metoda rekonstrukcji 3D

Test izotropii OTPC

- Czy protony wpadające w siatki nie wywołują błysku? Jeżeli tak, wyniki byłyby przekłamane.
- Przeprowadziłem test na losowej próbce ponad 400 przypadków.

Test izotropii OTPC

Test izotropii OTPC

Koniec końców

- Widać niewielką różnicę, ale jeżeli przeprowadzimy więcej testów...
- Zaobserwowane różnice mieszczą się w zakresie odchyleń statystycznych.

l.p.	w dół	w górę	różnica
1	44	57	13
2	60	52	-8
3	49	57	8
4	56	65	9
5	62	<mark>52</mark>	-10
6	61	57	-4
7	55	43	-12
8	44	61	17
9	50	58	8
10	57	58	1
Eksperyment	43	60	17

Koniec końców

Metody z pracy Dossat et al.

- W pracy z 2007[1] roku metoda wyznaczania współczynnika dla przejść bez emisji protonu była zupełnie inna.
- Tam za przypadki bez emisji protonu brano te zdarzenia, gdzie jon został zidentyfikowany i zatrzymany w krzemowym detektorze, ale sygnał z rozpadu nie przekroczył 900 keV.
- Zakłada się tutaj, że ogon rozkładu cząstek β zastępuje tą część protonów, które generują w krzemie sygnał mniejszy niż 900 keV.

Pierwsze obserwacje 3βp dla ⁴³Cr

- Wśród ponad 10 000 rozpadów z emisją opóźnionych protonów z ⁴³Cr zaobserwowałem 12 zdarzeń z emisją 3 protonów.
- To stanowi zaledwie promil zarejestrowanych rozpadów!
- Tak dokładny wynik znakomicie obrazuje czułość komory OTPC. Jest to znakomite narzędzie do badania procesów o małym prawdopodobieństwie.
- Poniżej kilka zdjęć...

Galeria 3p

Galeria 3p

Galeria 3p

Jeszcze bardziej aktualny schemat rozpadu ⁴³Cr

Podsumowanie

- Przedstawiłem wyniki badań przeprowadzonych za pomocą OTPC. Na szczególną uwagę zasługuje fakt, że dane te były zebrane "przy okazji" - jako dane monitorujące działanie komory nie zakłócając głównego eksperymentu.
- Zmierzono T_{1/2} ⁴³Cr, a także współczynniki rozgałęzienia.
- Pewną niespodzianką było zarejestrowanie emisji 3 protonów.
- OTPC okazuje się rewelacyjnym narzędziem do badań emisji protonów opóźnionych.

Przyszłość

- Automatyzacja analizy problemy głównie z zakresu analizy i przetwarzania obrazu.
- Zmierzenie rozkładu kątowego dla emisji dwóch protonów opóźnionych (w 2D jest to proste, w 3D może okazać się nie możliwe)
- Latem a pomocą ulepszonej wersji komory przeprowadzone zostaną (miejmy nadzieję) badania ⁴⁸Ni w poszukiwaniu promieniotwórczości dwuprotonowej.

Literatura

[1] Dossat et al. NuclearPhysicsA792(2007)18–86

- [2] Roman Nowak Statystyka dla fizyków in spe (studentów fizyki jądra atomowego i cząstek elementarnych). Wydział Fizyki, UW,1999.
- [3] M. Pomorski praca magisterska pt. "Badanie rozpadu beta bardzo neutrono-deficytowego izotopu ⁴³Cr" - najłatwiej namierzalna poprzez e-mail feld12@wp.pl