Rozkłady wysokości barier: pytania i odpowiedzi

Eryk Piasecki

for the Barrier Collaboration

Warszawa, Styczeń, 2010

barrier height distribution

⁵⁸Ni + ⁶⁰Ni

A.M.Stefanini et al., Phys.Rev.Lett. 74(1995)864

Motivati ons

 tunneling through the barrier is influenced by environment (in nuclear

phys. "environment" = nuclear structure)

- the structure influences reaction channels and couplings between them (e.g. seen in fusion cross section enhancement)
- barrier distribution is a fingerprint of the couplings
- theory testing: Coupled Channels Method with strong channels^(*) explicitly taken into account

(*) strong channels = connected with collective state excitations

Two experimental methods:

FUSION

QUASI-ELASTIC BACKSCATTERING

Are the methods equivalent?

 $^{16}O + ^{144}Sm$

H.Timmers et al., NP. A584(1995)195

Predictions of Coupled Channels Theory for ²⁰Ne + ¹¹⁸Sn (CCFULL code)

Y.Fujiwara et al., Suppl.Progr.Th.Phys. 68(1980)111

 5α configuration of the basis intrinsic wave function in the α -¹⁴C- α GCM; *d* is the distance between two α in ¹⁴C-like core, and *a* and *b* are treated as the generator coordinates.

Cluster

model

Realisation of the QE method in the Warsaw Cyclotron experiments

 $D_{qe}(E) = -\frac{d}{dE} \left(\frac{\sigma_{qe}}{\sigma_{Ruth}} \right)$

Results of measurements:

For ¹¹⁸Sn: no "structure" no agreement with theory

Results of measurements:

For ¹¹⁸Sn: no "structure" no agreement with theory

for ^{nat}Ni: visible "structure" good agreement with theory

What causes smoothing out of structure in the case of the Sn targets?

<u>Hypothesis</u>: p, n, α **TRANSFER** during ²⁰Ne scattering

- > disregarded in the CC calculations
- > stronger in the Sn than in the Ni case

Next candidate for study: Zr

Expectations & experimental results:

small transfer prob. barrier structure

²⁰Ne + ⁹²Zr:

²⁰Ne + ⁹⁰Zr:

larger transfer prob.

no structure

wider barrier distribution

Transfer probablity measurements: ICARE @ HIL

ToF method - experimental set-up

Example of ToF vs energy spectrum

Non-transfer backscattering ²⁰Ne + ^{90,92}Zr

Preliminary conclusion

Apparently QE barrier distributions can be smoothed by a large number of weakly populated **single-particle excitations**

How about D_{fus}?

²⁰Ne + X

leV⁻¹]

CC11, CC12: ²⁰Ne + X; Near-barrier energy; 150°

Projects for the future:

- D_{fus} for ²⁰Ne + ^{90,92}Zr
- D_{qe} for ²⁰Ne + ^{58,60,61}Ni
- D_{qe} for ^{24,....}Mg + ⁵⁸Ni,^{90,92}Zr

²⁰Ne,²⁴Mg + ⁹⁰Zr; Calculated (CCQEL)

<u>The BARRIER & ICARE</u> <u>Collaborations</u>:

Warsaw University (Inst. Exp. Phys. & Heavy Ion Lab):

E.Piasecki, Ł.Świderski, J.Jastrzębski, A.Kordyasz, M.Kowalczyk, M.Kisieliński, K.Piasecki, A.Trzcinska, W.Gawlikowicz

Białystok University: T.Krogulski

Institute of Nuclear Physics (Kraków): St.Kliczewski

Technische Universitat (Darmstadt): M.Mutterer

Radium Institute (St. Petersburg): S.Khlebnikov,

University of Jyvaskyla: W.Trzaska, M.Sillanpää, G.Tiourin

Tohoku University: K.Hagino

IPHC (Strasbourg): N.Rowley, M.Rousseau, J.Devin, V.Rauch

Inst. Nucl. Studies (Warsaw): N.Keeley, E.Piasecki, K.Rusek, I.Strojek

LNL (Legnaro): A.Stefanini

LNS (Catania): P.Russotto

JINR (Dubna): E.Kozulin, S.Smirnov, T.Loktev

Kurchatov Inst. (Moscow): A.Ogloblin, S.Dmitriev