

Probing Nuclear Structure with Fast Neutrons

Steven W. Yates

10 March 2010

7 MV Van de Graaff Accelerator

7 MV Van de Graaff Accelerator

Properties of beams

- 1 H, 2 H, 3 He, and 4 He
- 0.5-7.0 MeV
- Pulsed at 1.875 MHz

7 MV Van de Graaff Accelerator

lon Source

As Feynman said, the hadron-hadron work [in the Stanford Linear Accelerator Center, SLAC] was like trying to figure out a pocket watch by smashing two of them together and watching the pieces fly out.

> James Gleick, *Genius: The Life and Science of Richard Feynman*

Neutron Production

 $^{3}H(p,n)^{3}He Q = -1 MeV ^{2}H(d,n)^{3}He Q = 3 MeV$

Neutron Energies (Accelerator Voltage: 1.5 – 7.0 MV)

 3 H(p,n) 0.5 < E_n < 6 MeV 2 H(d,n) 4.5 < E_n < 10 MeV

 $(n,n'\gamma)$ reaction

Cooled

Nucleus

Singles Measurements

Compton suppression

MeV Neutrons

TOF gating

D. Bandyopadhyay et al., Phys. Rev. C 68, 014324 (2003).

Doppler-Shift Attenuation Method

$\mathsf{E}(\theta) = \mathsf{E}_{\gamma} \left(1 + v/c \cos \theta\right)$

The nucleus is recoiling into a viscous medium.

$$v \rightarrow v(t) = F(t)v_{max}$$

E(θ) = E _{γ} (1 + F(τ) v/c cos θ)

M. Yeh et al., Phys. Rev. C 57, R2085 (1998)

 $E(\theta) = E\gamma (1 + F(\tau) v/c \cos \theta)$

DSAM Lifetimes

KEGS

Coincidence Measurements at TUNL

3 Compton-suppressed clover detectors

⁹⁴Zr(n,n'γγ) Spectra

Inelastic Neutron Scattering

- No Coulomb barrier/variable neutron energies
- Good energy resolution (γ rays detected)
- Nonselective, but limited by angular momentum
- Lifetimes by Doppler-shift attenuation method
 Belgya, Molnár, and Yates, Nucl. Phys. A607, 43 (1996) (feeding-time problem minimized)
- Gamma-gamma coincidence measurements McGrath *et al.*, Nucl. Instrum. Meth. A421, 458 (1999) Elhami *et al.*, Phys. Rev. C 78, 064303 (2008).
- Limited to stable nuclei
- Large amounts of enriched isotopes required

Collective Structures

Spherical (Vibrational) $E = n\hbar\omega$

Deformed (Rotational) $E = I(I+1)\hbar^2/2I$

R(E(4⁺) / E(2⁺)) Systematics plot from Burcu Cakirli

Quadrupole

Courtesy of M. Itoh and Y. Fujita

Mixed-Symmetry States

Predicted by IBM-2

Symmetric States: Q_S

Mixed-Symmetry (MS) States: Q_m

Experimental Observables for MS States

Low-lying 2⁺ state in weakly deformed nucleus

Strong M1 transition to the symmetric state of the same phonon order, $B(M1) \sim 1\mu_N^2$

Weakly collective E2 transitions to the symmetric state of lower phonon order

N. Pietralla, P. von Brentano, and A. F. Lisetskiy, Prog. Part. Nucl. Phys., 60 (2008) 225

N. Pietralla, P. von Brentano, and A. F. Lisetskiy, Prog. Part. Nucl. Phys., 60 (2008) 225

Why study ⁹⁴Zr?

- *MS states have been observed in neighboring nuclei (N=52). How do they evolve in this region, e.g., in N=54 nuclei?
- *The (n,n'γ) reaction is effective in obtaining information on low-lying, lowspin states, *i.e.*, MS states and other collective excitations.
- With lifetimes and other spectroscopic information (δ, BR), absolute transition rates can be obtained.

Symmetric and MS States in ⁹⁴Zr?

Symmetric States?

Transitions to 2_1^+ vs. Transitions to 2_2^+ state

Two Configurations?

- 2₁+ state: neutron dominant, negative g-factor
- 2₂⁺ state: proton dominant, positive g-factor (Werner *et al.*, Phys. Rev. C 78, 031301(R), 2008)
- Excitations decay to 2₁⁺ and 2₂⁺ states via enhanced E2 transitions.
- M1 transitions connect different configurations.

Valence Nucleons in ⁹⁴Zr

 $\pi(p_{1/2})^2 \vee (d_{5/2})^4$

Subshell closure at Z=40 Subshell closure at N=56

Shell Model Calculations: V_{low-k} Interaction and ⁸⁸Sr core

Shell Model and IBM-2 Results

Also, K. Sieja *et al.*, Phys. Rev. C **79**, 064310 (2009), almost reproduces $B(E2;2_2^+ \rightarrow 0_1^+)/B(E2;2_1^+ \rightarrow 0_1^+)$ by increasing the effective charges to $e^v = 0.8$ and $e^{\pi} = 1.8$.

Conclusions and Outlook

- Inelastic neutron scattering continues to provide new insights into nuclear structure.
- Studies of ⁹⁴Zr reveal an interesting and unique result — *i.e.*, $B(E2;2_2^+ \rightarrow 0_1^+) > B(E2;2_1^+ \rightarrow 0_1^+)$.
- A unexpectedly large number of collective excitations are observed in ⁹⁴Zr.
- These levels can be classified into sets of states according to their E2 decays to the 2₁⁺ (neutron dominant) and 2₂⁺ (proton dominant) states.
- M1 decays occur between these sets of states.
- The quadrupole moments should be measured. (M. Scheck *et al.*)

University of Kentucky

E. Elhami, S. Choudry, S. Mukhopadhyay, J. N. Orce, M. Scheck, M. T. McEllistrem

Our Colleagues at TUNL

C. Angell, M. Boswell, B. Fallin, C. R. Howell, A. Hutcheson, H.J. Karwowski, J.H. Kelley, Y. Parpottas, A.P. Tonchev, W. Tornow

"Art is I; science is we." – Claude Bernard

Thank you

