Niskoleżące stany wibracyjne o ujemnej parzystosci w aktynowcach.

I, II, III(?) minima.

M. Kowal, J. Skalski

- Wstęp motywacja
- Zastosowana metoda
- Przestrzeń deformacji
- Wyniki:
- Stan podstawowy Bariery rozszczepieniowe w aktynowcach Drgania wokół masowej asymetrii w I i II minimum Problem istnienia III minimów i ew. drgań
- Podsumowanie

Metoda:

 $E(def, Z, N) = E_{mic}(def, Z, N) + E_{mac}(def, Z, N)$

- Energia mikroskopowa:
- Potencjał Woodsa Saxona z uniwersalnym zestawem parametrów
- Oddziaływanie resztkowe: BCS
- Poprawka powłokowa Strutińskiego
- "Yukawa-plus-exponential" model dla części makroskopowej.

Parametryzacja kształtów:

 $R(\Theta, \Phi) = \left\{ 1 + a_{20}Y_{20} + a_{40}Y_{40} + a_{60}Y_{60} + a_{80}Y_{80} \right\}$

$$+a_{22}Y_{22}^{(+)}+a_{42}Y_{42}^{(+)}+a_{44}Y_{44}^{(+)}$$

 $+a_{32}Y_{32}^{(+)}+a_{52}Y_{52}^{(+)}$

 $+a_{30}Y_{30}+a_{50}Y_{50}+a_{70}Y_{70}$

 $Y_{\lambda\mu}^{(+)} = \frac{1}{\sqrt{2}} (Y_{\lambda\mu} + Y_{\lambda-\mu})$

Metoda minimalizacji w przestrzeni wielowymiarowej

- ZALETA: możliwość rachunku w b. bogatej klasie kształtów (10-12 DIM) – NIEMOŻLIWE DO OSIAGNIĘCIA W RACHUNKU NA SIATACH!!!
- WADA: (ryzyko znajdowania minimów lokalnych) – Niezbędna kontrola błędów:
- Wartości gradientów (0!)
- Ciągłości parametrów deformacji
- Różne od zera wartości startowe
- Test Monte-Carlo

Bariery na rozszczepienie w aktynowcach:

N

Ζ	Ν	A	LSD	FRLDM	HN	EXP
92	140	232	1.	3.2	4.5	5.4
	142	234	4.4	3.8	5.1	5.9
	144	236	5.5	4.5	5.6	5.6
	146	238	6.7	5.1	5.9	6.0
	148	240	6.5	5.7	5.9	6.1
94	142	236	5.9	4.5	5.4	5.7
	144	238	6.5	5.3	6.1	5.9
	146	240	7.0	6.0	6.4	5.8
	148	242	7.1	6.4	6.3	5.7
	150	244	6.9	6.6	6.0	5.5
	152	246	7.2	6.3	5.7	5.4
96	146	242	7.1	6.6	6.7	6.0
	148	244	7.2	6.9	6.6	6.1
	150	246	6.8	7.0	6.2	6.0
	152	248	6.6	6.8	5.9	5.9
	154	250	5.9	5.9	5.3	5.4
98	152	250	6.5	7.1	6.6	5.6
	154	252		6.1	5.8	5.3

	0. e		
Models:	LSD	FRLDM	HN
Ν	16	18	18
$< B_{f}^{th} - B_{f}^{exp} >$	0.9	1.0	0.4
$Max \mid B_{f}^{th} - B_{f}^{exp} \mid$	1.8	2.2	1.0
R.m.s	1.0	1.1	0.5

Polikanov et al. (1962) Odkrycie izomerów rozszczepieniowych Strutinsky (1967) Rachunek drugich minimów Specht et al. (1972) Identyfikacja poziomów rotacyjnych z dużym momentem bezwładności w 240 Pu

D. Gassmann et al., Phys. Lett. B 497 (2001) 181

Third minima: Th,U First predicted: P. Moller, S.G. Nilsson and R.K. Sheline (1972) then Howard & Moller (1980) – rather shallow III-rd minima S.Cwiok et al. – rather deep III-rd minima some, not all, HF calculations give III-rd minima, BUT they often differ from macro-micro results

Experiments:

1)Studies of microstructure in the resonances of fission probability found using (n,f), (t,pf) and (d,pf) reactions
B.B. Back et al. (1972)
J. Blons et al. (1975)
recent claims of III-rd minima in 232,234,236U
2) Also observations of asymmetric angular distribution of light fission fragments around 232Th

Difficulties with energy minimization with YPE

ß

III min 140 or 195 b

BÜRVENICH, BENDER, MARUHN, AND REINHARD

PHYSICAL REVIEW C 69, 014307 (2004)

Z	N	E(I)MIN	B(I)	E (II) MIN	B (II)	E(III) a b3=0,6	E(III) b B3=0,3	B(III)
90	140	-2,3	6,2	2.5		4.8	4.5	
90	142	-2,5	6,9	2.0	6,4	4.8	4.4	9,4
92	140	-2,7	4,5	3.0	5,7	2.7	4.2	6,7
92	142	-2,9	5,1	2.5	6,6	2.4	4.0	7,7
92	144	-3,0	5,9	2.0	6,2	2.2	3.8	7,3
94	146	-3,9	6,9	2.4	6,0	0.3	3.3	5,8

Sposób wyliczenia drgań:

$$H = -\frac{\hbar}{2\sqrt{\det B}} \sum_{i,j} \frac{\partial}{\partial \beta_i} (\sqrt{\det B} (B^{-1})_{ij} \frac{\partial}{\partial \beta_i}) + V(\beta_k)$$

$$H = -\frac{\hbar}{2} \sum_{i,j} (B^{-1})_{ij} \frac{\partial^2}{\partial \beta_i \partial \beta_j} + \frac{1}{2} \sum_{i,j} C_{ij} \beta_i \beta_j$$

$$\det \left| C_{ij} - (\hbar \omega_K)^2 B_{ij} \right| = 0, \qquad i, j = \beta_{\lambda K} \qquad \lambda = 3, 5, 7$$

Parabolic fit to E(beta30) in the II-nd well

Sztywności I - minimum

I minimum (0-) sprzężenie $\beta_3 \quad \beta_7$

Z	N	А	B(b3,b5,b7)	B=const	Sqrt(C/B)	EXP
92	138	230	550,5	527,4	756,4	366,7
92	140	232	697,8	545,6	772,5	563,2
92	142	234	819,5	689,3	905,9	786,3
92	144	236	693,7	643,9	880,8	687,6
92	146	238	451,4	560,9	795,1	680,1
94	144	238	465,4	528,9	814,1	605,14
94	146	240	338,1	508,5	792,3	597,34
94	150	244	1061,6	1082,7	1128,5	?
96	150	246	1091,7	1137,8	1217,3	1078,9

Sekwencja podstaw pasm:

Il minimum (0-) sprzężenie $\beta_3 \quad \beta_5$

Z	N	A	B(b3,b5,b7)	B=const	Sqrt(C/B)
92	138	230	1137,6	1309,0	2482,2
92	140	232	1131,5	1331,0	2429,8
92	142	234	1399,5	1390,1	2671,7
92	144	236	1198,7	1429,7	3002,2
92	146	238	1236,1	1491,5	3103,8
94	144	238	1196,5	1504,8	2999,2
94	146	240	1272,0	1565,0	3253,5
94	150	244	1352,6	1653,6	3337,8
96	150	246	1379,9	1681,0	3439,7

II minimum (0-)

240 Pu

E(0-)(th)=1272 KeV E(0-)(exp)=555 KeV

E(1-)(th)=1289,2 KeV E(1-)(exp)=846 KeV

E(2-)(th)=1182,8 KeV E(2-)(exp)=806 KeV

 $T = \left\langle \beta_k \right\rangle_{tr} = \int \sqrt{\det B} \psi_{exc}^* \psi_{gs}(\beta_k); \qquad \beta_k = \sqrt{\hbar} \sum_k \left(\sum_j \frac{S_{1ij} S_{2jk}}{\sqrt{B_{dj} \Omega_{dk}}} \right) \xi_k$ K=0

I minimum

Ζ	Α	T(LD)	T(Sh_cor)	ΤΟΤ
92	230	0,19	0,04	0,23
92	232	0,17	0,00	0,17
92	234	0,17	-0,07	0,10
92	236	0,17	-0,16	0,01
92	238	0,17	-0,24	-0,07
94	238	0,19	-0,13	0,06
94	240	0,18	-0,18	0,00
94	244	0,15	-0,18	-0,03
96	246	0,15	-0,14	0,01

II minimum

Z	Α	T(LD)	T(Sh_cor)	тот
92	230	0,29	0,11	0,40
92	232	0,34	0,08	0,42
92	234	0,34	0,04	0,38
92	236	0,34	0,02	0,36
92	238	0,33	0,02	0,35
94	238	0.33	0.09	0,42
94	240	0.32	0.76	1.08
94	244	0.29	0.03	0.32
96	246	0,29	0,12	0,41

III-rd minima show large mass-asymmetry. One expects nearly degenerate, alternating parity gs band.

The K=0 vibration means a different thing than in the I and II well: it is no a piori reason that it be small.

Since the III-rd minima are axially symmetric, the scheme of calculating vibration energies is kept.

	III MIN (b3=0,3)							
z	N	A	ALL	SQRT (C3i/B3i)				
	OSCILLLATION 0-							
90	140	230	1351,3	2060,9				
90	142	232	1436,3	2161,5				
92	140	232	1129,3	2065,6				
92	142	234	1226,4	2239,3				
92	144	236	1322,3	2252,5				
94	146	240	1361,6	2122,8				
		OSCILL	ATION 1-					
90	140	230	1366,9	2271,9				
90	142	232	1492,9	2391,4				
92	140	232	1464,6	2208,7				
92	142	234	1500,6	2270,4				
92	144	236	1419,2	2287,8				
94	146	240	1265,5	2133,5				
		OSCILL	ATION 2-					
90	140	230	1720,0	2080,3				
90	142	232	1648,7	2128,8				
92	140	232	1768,9	2019,2				
92	142	234	1680,3	2023,4				
92	144	236	1634,5	2018,3				
94	146	240	1851,3	2173,8				

III MIN (b3=0,6)						
z	N	А	ALL	SQRT (C3i/B3i)		
		OSCILL	ATION 0-			
90	140	230	1626,1	2154,		
90	142	232	1330,1	2337,8		
92	140	232	1888,8	3055,4		
92	142	234	1991,6	3181,2		
92	144	236	2164,7	3297,3		
94	146	240	1959,8	3350,0		
	(OSCILLA	TION 1-			
90	140	230	1741,0	2980,3		
90	142	232	1821,7	2988,7		
92	140	232	1659,6	2538,9		
92	142	234	1800,3	2751,8		
92	144	236	2004,7	2851,9		
94	146	240	1889,2	3044,8		
		OSCILL	ATION 2-			
90	140	230	1930,5	2145,1		
90	142	232	2138,8	2415,9		
92	140	232	2372,4	2736,2		
92	142	234	2100,2	2578,9		
92	144	236	2529,5	2886,6		
94	146	240	1816,3	2285,4		

Test symetrii tetrahedralnej - 226Th:

Wnioski: III MINIMA 1.WS+YpE macro – micro => podwójne, głębokie III – minima.

- 2. WS+ LSD macro-micro => pojedyncze, głębokie III minima.
- 3. FRLDM macro micro => płytkie III minima.
- 4. HF model => brak III minimów.

Czy eksperyment jest na tyle czysty aby mógł odpowiedzieć na to pytanie?

OSCYLACJE ,,OKTUPOLOWE"

- Niezła zgodność z doświadczeniem w I minimum. (głównie za sprawą małych sztywności w kierunku Y30)
- Odtwarzamy sekwencje stanów 0-,1-,2-,3- dla 230Th,
 236U, zła kolejność podstaw pasm (1-,2-) w 232Th,
 234Th 234U.
- 3. Zbyt wysoka energia drgania 0- w II minimum w stosunku do sugerowanych doświadczalnie.
- Bardzo ważna rola sprzężeń do wyższych składowych oktupolowych (7 – I minimum, 5 – II minimum).
- 5. Brak niskoleżących stanów o ujemnej parzystości w III minimach.

TEST KSZTAŁTU TETRAHEDRALNEGO

- 1. Negatywny dla 226 Th (minimum ,,oktupolowe'' Y30).
- Przebadane jądra superciężkie nie wykazują istnienia takiej symetrii (Y32).