<u>Gamow-Teller transitions:</u> <u>vivid nuclear weak process in the Universe</u>

Yoshitaka FUJITA (Osaka Univ.) Dept. Physics, University of Warsaw March 26, 2010

GT : Important weak response, simple $\sigma\tau$ operator

♦Good Probe to Study the Key Part of the Nuclear Structure♦Astrophysical Interest

β decay : absolute B(GT), limited to low-lying state (³He,t) reaction : relative B(GT), Highly Excited States ** both are important for the GT studies!

Comparison of (p, n) and (³He,t) 0° spectra

Neptune driving Waves 波を操る海神ネプチューン

Neptune=弱い相互作用 (weak interaction)

Powerful Waves=強い相互作用 (strong interaction)

Neptune and the waves, or "steeds," he rides.

Walter Crane, 1892

Nuclear Excitations by Charge Exchange Reaction and β-Decay

Study of Weak Response of Nuclei by means of Strong Interaction !?

β-decay & Nuclear Reaction * β -decay GT tra. rate = $\frac{1}{t_{1/2}} = f \frac{\lambda^2}{K} B(GT)$ B(GT) : reduced GT transition strength ∞ (matrix element)²

*Nuclear (CE) reaction rate (cross-section) = reaction mechanism

A simple reaction mechanism should be achieved ! we have to go to high incoming energy

Direct Reactions with Light Projectiles

N.-N. Int. : $\sigma\tau$ & Tensor- τ *q*-dependence

Love & Franey PRC 24 ('81) 1073

β-decay & Nuclear Reaction * β -decay GT tra. rate = $\frac{1}{t_{1/2}} = \int_{K}^{\lambda^2} B(GT)$ Study of Weak Response of Nuclei by means of

Strong Interaction !n)using β-decay as a reference\$ operator\$ operator\$ structure

A simple reaction mechanism should be achieved !
we have to go to high incoming energy

Connection between β-decay and (³He,t) reaction

> by means of I sospin Symmetry

T=1 I sospin Symmetry

Byodoin-temple 宇治·平等院

T=1 I sospin Symmetry

Transitions in real & isospin space (T=1)

 $T_z = +1$

Coulomb displacement energy

²⁶Mg(p, n)²⁶Al & ²⁶Mg(³He,t)²⁶Al spectra

**(³He,t): high resolution and sensitivity !

9Be(3He,t)9B spectrum (at various scales)

⁹Be(³He,t)⁹B spectrum (II)

Relationship: Decay and Width Heisenberg's Uncertainty Priciple $\Delta x \cdot \Delta p \approx \hbar$ $\Delta t \cdot \Delta E \approx \hbar$ Width $\Gamma = \Lambda E$ *if: Decay is Fast, then: Width of a State is Wider ! *if $\Delta t = 10^{-20} \sec \rightarrow \Delta E \sim 100 \text{ keV}$ (particle decay) $\Delta t = 10^{-15} \sec \rightarrow \Delta E \sim 1 \text{ eV}$ (fast γ decay)

I sospin Selection Rule : in *p*-decay of ⁹B

⁹Be(³He,t)⁹B spectrum (III)

Strength ratio of g.s. & 14.7 MeV 3/2⁻ states: 140:1

Shell Structure and Cluster Structure

⁹Be(³He,t)⁹B spectrum (III)

14.7 MeV T=3/2 state is very weak!

Strength ratio of g.s. & 14.7 MeV 3/2⁻ states: 140:1

High-resolution Experiment

-beam matching techniques-(dispersion matching techniques)

RCNP Ring Cyclotron

Good quality ³He beam (140 MeV/nucleon)

♦ SUMITOMO

Large Angl Spectromet

Grand Raiden Spectrometer

(³He, t) reaction

³He beam

Beam line WS-course at RCNP

Matching Techniques

∆E=30 keV

RCNP, Osaka Univ.

Supernova Cycle

Life Cycle of a Red Supergiant Massive Star / Supernova

Ne bula

Black Hole

Neutron Star

Recycling

Crucial Weak Processes during the Core Collapse $\sigma\tau$: important (A,Z)=nuclei in the Cr, Mn, Fe, Co, Ni region

Langanke & Martinez-Pinedo Rev.Mod.Phys.75('04)819

pf-shell Nuclei !

Balantekin & Fuller J.Phys.G 29('03)2513

 $p+e^{-} \rightleftharpoons n+\nu_{e}$, $n+e^+ \rightleftharpoons p+\overline{\nu}_e$, \rightarrow $(A,Z) + e^{-} \rightleftharpoons (A,Z-1) + \nu_{e}$, \rightarrow $(A,Z) + e^+ \rightleftharpoons (A,Z+1) + \overline{\nu}_e$, $\nu + N \rightleftharpoons \nu + N$, $N+N \rightleftharpoons N+N+\nu+\overline{\nu}$. $\nu + (A,Z) \rightleftharpoons \nu + (A,Z),$ $\nu + e^{\pm} \rightleftharpoons \nu + e^{\pm}$. $\nu + (A,Z) \rightleftharpoons \nu + (A,Z)^*$ $e^+ + e^- \rightleftharpoons \nu + \overline{\nu}$. $(A,Z)^* \rightleftharpoons (A,Z) + \nu + \overline{\nu}.$

**Derivation of "absolute" B(GT) values

* β -decay: T_{1/2} and absolute B(GT) values but only for the low-lying states

*(³He,t) reaction: highly-excited states can be accessed but only the relative B(GT) values

Let's combine these data !

T=1 I sospin Symmetry

**Reconstruction of β decay from (³He,t) ---assuming isospin symmetry ---

GSI: RISING set up - active stopper campaign -

Summary

- * Weak response of Nuclei was studied by using Strong Int. --Charge Exchange Reaction--
- * Isospin Symmetry was introduced.
- * High resolution of the (³He,t) reaction allowed the comparison of analogous transitions
- * Absolute *B*(GT) strengths were derived.
- * High resolution (p, p') and/or (³He,³He') allows the study of B(E1) strengths.

Extended Collaboration is very important!