Wewnętrzne Dyskretne Symetrie Jądrowe

Andrzej Góźdź,

Zakład Fizyki Matematycznej,

Instytut Fizyki, UMCS, Lublin

Kwiecień 2010

WSPÓŁPRACA

Artur Dobrowolski, Institut Fizyki, Zakład Fizyki Matematycznej, UMCS, Lublin,

Agnieszka Szulerecka, Institut Fizyki, Zakład Fizyki Matematycznej, UMCS, Lublin,

> Jerzy Dudek, IPHC/IReS, Strasbourg, Francja

> > Katarzyna Mazurek IFJ, Kraków

Symetrie wewnętrzne

- Schematyczny model kolektywny
- Przykłady: ¹⁵⁶Dy, ¹⁵⁶Gd

Symetrie czasoprzestrzenne, a symetrie wewnętrzne

$$G_{lab} \times (G_{int} = \overline{G} \times \tilde{G})$$

- Rozważmy jądro atomowe w układzie środka masy. Pozostającą nierelatywistyczną symetrią czasoprzestrzenną jest G_{Iab} = O(3).
- Każdy hamiltonian jądrowy powinien być niezmienniczy względem O(3).
- Symetrie wewnętrzne G_{int} to symetrie komutujące ze wszystkimi symetriami czasoprzestrzennymi (np.: isospin, seniority, ładunki, liczba cząstek, itd.).
- Istnieje też specjalny rodzaj wewnętrznych symetrii czasoprzestrzennych (sprzeczość ?).

Grupy wewnętrzne $\overline{\mathrm{G}}$

Jin-Quan Chen, Jialun Ping & Fan Wang: Group Representation Theory for Physicists, World Scientific, 2002. Def. Dla każdego elementu g grupy G można zdefiniować odpowiadający mu operator \overline{g} działający w liniowej przesrzeni grupowej \mathcal{L}_G następująco:

$$\overline{g}S = Sg$$
, for all $S \in \mathcal{L}_G$.

Grupa tworzona przez zbiór operatorów \overline{g} nazywana jest grupą wewnętrzną grupy G. FUNDAMENTALNA WŁASCIWOŚĆ:

$$[\mathrm{G},\overline{\mathrm{G}}]=0$$

Grupy $G i \overline{G}$ są antyizomorficzne.

Pasma o określonych symetriach

• Rozkład spektralny hamiltonianu:

$$\hat{\mathcal{H}} = \sum_{
u} \epsilon_{
u} \mathcal{P}_{
u}$$

- Każdemu operatorowi P_{ν} przyporządkowujemy jego grupę symetrii ${\rm G}_{\nu}$
- Grupujemy w zbiory operatory P_{ν} o tych samych symetriach:

$$\mathcal{O}_{\mathrm{G}} = \{ P_{n} : [G, P_{n}] = 0 \}$$

• Hamiltonian pasma o symetrii G:

$$\hat{\mathcal{H}}_{\rm G} = \sum_{\boldsymbol{P}_{\boldsymbol{n}} \in \mathcal{O}_{\rm G}} \epsilon_{\boldsymbol{n}} \boldsymbol{P}_{\boldsymbol{n}}$$

• Rozkład $\hat{\mathcal{H}}$ na pasma o określonych symetriach:

$$\hat{\mathcal{H}} = \sum_{\mathrm{G}} \hat{\mathcal{H}}_{\mathrm{G}}$$

Zmienne wewnętrzne

- Zmienne w układzie laboratoryjnym: $ightarrow \{q_{\lambda\mu}^{(lab)}\}.$
- Zmienne w układzie wewnętrznym (tu układ obracający się): $ightarrow \{q_{\lambda\mu}\}$
 - Transformacja N zmiennych w N nowych zmiennych ? Jeżeli chcemy wyseparować ruch rotacyjny, to:

$$q^{(lab)}
ightarrow (q, \Omega),$$

otrzymujemy nadmiarowy zbiór zmiennych.

• Zatem, wymagane są 3 dodatkowe warunki:

$$F_i(q, \Omega) = 0, \ i = 1, 2, 3.$$

Te warunki definiują powiązanie rotacyjnych zmiennych z pozostałymi stopniami swobody.

Model kolektywny

Schematyczny model vibracyjno-rotacyjny

$$\hat{\mathcal{H}} = \hat{\mathcal{H}}_{\textit{vib}} + \hat{\mathcal{H}}_{\textit{rot}}$$

Zmienne kolektywne 1/2

Równanie powierzchni w układzie wewnętrznym:

$$R(heta, \phi) = R_0 \left(1 + \sum_{\lambda=2,3} \sum_{\mu} lpha^{\star}_{\lambda\mu} Y_{\lambda\mu}(heta, \phi)
ight)$$

Zmienne kolektywne $\alpha_{\lambda\mu}$ są tensorami sferycznymi względem wewnętrznej grupy ortogonalnej $\overline{O(3)}$. Spełniają warunki:

$$F_i(\{\alpha_{\lambda\mu}\}, \Omega) = 0, \ i = 1, 2, 3; \ \lambda = 2, 3.$$

Zmienne kolektywne modelu 2/2

- Nienadmiarowa część wibracyjnych zmiennych kolektywnych powinna określać kształ, a nie orientację przestrzenną jądra atomowego określaną przez kąty Eulera $\Omega = (\Omega_1, \Omega_2, \Omega_3)$.
- Otwarty problem: konstrukcja orbit $\mathrm{SO}(3)$ w przestrzeni deformacji.

Uwaga: Jedynym niezmiennikiem oktupolowym względem T_d jest:

$$\alpha_{32}'' \equiv \xi = -\frac{i}{2}(\alpha_{32} - \alpha_{3,-2}) = \operatorname{Im} \alpha_{32}$$

Kolektywne operatory przejść emg

Eisenberg, Greiner, Nuclear theory, 1970. Operator przejść emg w układzie laboratoryjnym:

$$\begin{aligned} Q_{\lambda\mu}^{coll} &= \sum_{\nu} D_{\mu\nu}^{\lambda}(\Omega)^{\star} Q_{\lambda\nu}^{lab;coll} \\ Q_{\lambda\nu}^{coll} &= \frac{3ZR_{0}^{\lambda}}{4\pi} \Big\{ \alpha_{\lambda\nu} + \frac{\lambda+2}{2\sqrt{4\pi}} \sum_{\lambda_{1}\lambda_{2}} \sqrt{\frac{(2\lambda_{1}+1)(2\lambda_{2}+1)}{2\lambda+1}} \\ (\lambda_{1}0\lambda_{2}0|\lambda 0)(\alpha_{\lambda_{1}} \otimes \alpha_{\lambda_{2}})_{\nu}^{\lambda} \Big\} \end{aligned}$$

gdzie transformacja do zmiennych wewnętrznych:

$$\alpha_{\lambda\mu} = \sum_{\mu'} D^{(\lambda)}_{\mu'\mu}(\Omega) \alpha^{(lab)}_{\lambda\mu'}$$

Czysty model oktupolowy T_d

Dla czystego modelu octupolowego T_d tzn. $\alpha_{3\mu} = 0$ dla $\mu \neq \pm 2$, operatory multipolowe sprzejść E1 i E2 się zerują:

- $Q_{1\mu}^{coll} = 0$, ponieważ (3030|10) = 0.
- $Q_{2\mu}^{coll}=0$, ponieważ (323 2|20) = 0.

Pierwszym niezerowym jest operator przejść E3.

Model kwadrupolowo-oktupolowy

Przyjmujemy, że kąty Eulera są bezpośrednio związane tylko ze zmiennymi kwadrupolowymi:

$$F_i(\{\alpha_{2\mu}\}, \Omega) = 0, \ i = 1, 2, 3.$$

Nie ma dodatkowych warunków na zmienne oktupolowe.

Operatory przejść E λ ; układ wewnętrzny

Operator przejść dipolowych:

$$Q_{10}^{coll} = \frac{3\sqrt{3}ZR_0}{16\pi\sqrt{\pi}} \left\{ \frac{6}{\sqrt{7}} \alpha_{22}\alpha_{3-2} - 12\sqrt{\frac{2}{35}}\alpha_{21}\alpha_{3-1} + \frac{18}{\sqrt{35}}\alpha_{20}\alpha_{30} - 12\sqrt{\frac{2}{35}}\alpha_{2-1}\alpha_{31} + \frac{6}{\sqrt{7}}\alpha_{2-2}\alpha_{3-2} \right\}$$

Operatory przejść E λ ; układ wewnętrzny

Operator przejść kwadrupolowych:

$$\begin{aligned} Q_{20}^{coll} &= \frac{3ZR_0^2}{4\pi} \Big\{ \alpha_{20} \\ &+ \frac{1}{\sqrt{5\pi}} \Big(\frac{10}{7} \alpha_{20} \alpha_{20} - \frac{10}{7} \alpha_{2-1} \alpha_{2-1} - \frac{20}{7} \alpha_{2-2} \alpha_{22} \\ &+ \frac{4}{3} \alpha_{30} \alpha_{30} - 2\alpha_{3-1} \alpha_{31} + \frac{10}{3} \alpha_{3-3} \alpha_{33} \Big) \Big\} \end{aligned}$$

Nie zawiera zmiennej tetraedralnej !!!

Problem wlasny i przejścia emg

Struktura Hamiltonianu modelu nie zawiera sprzężeń pomiędzy wibracją a rotacją:

$$\hat{\mathcal{H}} = \hat{\mathcal{H}}_{\textit{vib}} + \hat{\mathcal{H}}_{\textit{rot}}$$

Funkcje wlasne:

$$\Psi_{mnJM}(\alpha,\Omega) = \phi_m(\alpha) \mathcal{R}_n^{JM}(\Omega)$$

Zredukowane (względem M) elementy macierzowe:

$$\langle \Psi_{m'n'J'} || Q_{\lambda}^{(lab)} || \Psi_{mnJ} \rangle = \sum_{\mu} \langle \phi_{m'} | Q_{\lambda\mu} | \phi_{m} \rangle \langle \mathcal{R}_{n'}^{J'} || D_{\cdot\mu}^{\lambda\star} || \mathcal{R}_{n}^{J} \rangle$$

Zredukowane prawdopodobieństwo przejścia:

 $B(E\lambda;(mnJ) \rightarrow (m'n'J')) = |\langle \Psi m'n'J' || Q_{\lambda}^{(lab)} ||\Psi mnJ\rangle|^2/(2J+1)$

Struktura symetrii hamiltonianu pasma 1/3

$$\hat{\mathcal{H}}_{\mathrm{G}} = \hat{\mathcal{H}}_{\textit{vib}}^{\mathrm{G}_{\textit{vib}}} + \hat{\mathcal{H}}_{\textit{rot}}^{\mathrm{G}_{\textit{rot}}},$$

gdzie G jest maksymalną podgrupą kolektywną tzn. zawierającą elementy postaci (g,g), taką, że:

 $\mathrm{G} \subset \mathrm{G}_{\textit{vib}} \times \mathrm{G}_{\textit{rot}}.$

Zatem istnieją podgrupy G^\prime oraz $G^{\prime\prime}$:

$$\begin{split} \mathbf{G} &\sim \mathbf{G}' \subset \mathbf{G}_{\textit{vib}}, \\ \mathbf{G} &\sim \mathbf{G}'' \subset \mathbf{G}_{\textit{rot}}, \end{split}$$

Hamiltonian wibracyjny (kwadrupol+oktupol):

$$\hat{\mathcal{H}}_{\textit{vib}}^{\rm G} = \hat{\mathcal{H}}_{2;\textit{vib}}^{{\rm G}_{2;\textit{vib}}} + \hat{\mathcal{H}}_{3;\textit{rot}}^{{\rm G}_{3;\textit{vib}}},$$

tak, że

$$\mathrm{G}_{\textit{vib}} \subset \mathrm{G}_{2;\textit{vib}} \times \mathrm{G}_{3;\textit{vib}}.$$

Struktura symetrii hamiltonianu pasma 2/3

Wektory własne hamiltonianów $\hat{\mathcal{H}}_{vib}^{G_{vib}}$ oraz $\hat{\mathcal{H}}_{rot}^{G_{rot}}$ mogą być klasyfikowane zgodnie z łańcuchami grupowymi:

$$\begin{array}{rcl} \mathbf{G}_{\textit{vib}} &\supset & \mathbf{G}' \\ \uparrow &\uparrow &\uparrow \\ \boldsymbol{\Gamma}_{\textit{v}} & \boldsymbol{\sigma}_{\textit{v}} & \boldsymbol{\Gamma}' \end{array}$$

oraz

$$\begin{array}{cccc} \mathbf{G}_{\textit{rot}} & \supset & \mathbf{G}'' \\ \uparrow & \uparrow & \uparrow \\ \boldsymbol{\Gamma}_{r} & \boldsymbol{\sigma}_{r} & \boldsymbol{\Gamma}'' \end{array}$$

Struktura symetrii hamiltonianu pasma 3/3

Równania własne hamiltonianów składowych:

$$\hat{\mathcal{H}}_{\textit{vib}} \phi_{\kappa\nu_{\nu}\Gamma_{\nu}\sigma_{\nu}\Gamma'a'}(\alpha) = \epsilon^{(\textit{vib})}_{\kappa\nu_{\nu}\Gamma_{\nu}} \phi_{\kappa\nu_{\nu}\Gamma_{\nu}\sigma_{\nu}\Gamma'a'}(\alpha) \hat{\mathcal{H}}_{\textit{rot}} \mathcal{R}^{JM}_{\nu_{r}\Gamma_{r}\sigma_{r}\Gamma''a''}(\Omega) = \epsilon^{(\textit{rot})}_{\nu_{r}\Gamma_{r};JM} \mathcal{R}^{JM}_{\nu_{r}\Gamma_{r}\sigma_{r}\Gamma''a''}(\Omega)$$

Równanie własne hamiltonianu pasma:

$$\hat{\mathcal{H}}_{G} \Psi_{\nu_{\nu} \Gamma_{\nu} \sigma_{\nu} \Gamma'; \nu_{r} \Gamma_{r} \sigma_{r} \Gamma''; \Gamma_{a}}^{\kappa JM}(\alpha, \Omega) = \\ (\epsilon_{\kappa \nu_{\nu} \Gamma_{\nu}}^{(vib)} + \epsilon_{\nu_{r} \Gamma_{r}; JM}^{(rot)}) \Psi_{\nu_{\nu} \Gamma_{\nu} \sigma_{\nu} \Gamma'; \nu_{r} \Gamma_{r} \sigma_{r} \Gamma''; \Gamma_{a}}^{\kappa JM}(\alpha, \Omega)$$

Liczby kwantowe: κ , J, M – parzystość, moment pędu; ν_v , ν_r – dodatkowe liczby kwantowe wynikające ze struktury hamiltonianów; Γ , a znakują wektory n.r. grupy symetrii hamiltonianu pasma.

Symetrie hamiltonianu Bohra

Hamiltonian Bohra:

$$\hat{\mathcal{H}}_{\mathcal{B}ohr} = \hat{\mathcal{H}}_{\textit{vib}}^{\mathrm{G}_{\textit{vib}}} + \hat{\mathcal{H}}_{\textit{vib+rot}}^{\mathrm{G}_{\textit{vib+rot}}}$$

gdzie

$$\hat{\mathcal{H}}_{\textit{vib}}^{\text{G}_{\textit{vib}}} = \frac{1}{2} \left\{ \frac{1}{\beta^4} \frac{\partial}{\partial \beta} \beta^4 \frac{\partial}{\partial \beta} - \frac{1}{\beta^2 \sin(3\gamma)} \frac{\partial}{\partial \gamma} \sin(3\gamma) \frac{\partial}{\partial \gamma} + \beta^2 \right\}$$

oraz

$$\hat{\mathcal{H}}_{vib+rot}^{G_{vib+rot}} = rac{1}{8eta^4} \sum_{k=1,2,3} rac{J_k^2}{\sin^2(\gamma - (2\pi/3)k)}.$$

Tu:

$$\mathbf{G} = \overline{\mathbf{D}}_{2h} \quad \mathrm{gdy} \dot{\mathbf{z}} \quad \mathbf{G}_{\textit{vib}} = \overline{\mathbf{O}(3)} \quad \mathrm{oraz} \quad \mathbf{G}_{\textit{vib+rot}} = \overline{\mathbf{D}}_{2h}$$

Wibracyjne funkcje kolektywne 1/2 Stan kwadrupolowy:

$$|q
angle = \mathcal{T}(\dot{lpha}_{20},\dot{lpha}_{22})|0
angle,$$

gdzie $|0\rangle$ jest niezdeformowaną próżnią kwadrupolowo–oktupolową, a $\mathcal{T}({\dot{\alpha}_{lm}})$ reprezentuje operator translacji w przestrzeni deformacji:

$$\mathcal{T}(\{\dot{\alpha}_{lm}\})f(\{\alpha_{lm}\})=f(\{\alpha_{lm}-\dot{\alpha}_{lm}\})$$

Współczynniki normalizacyjne po rzutowaniu na dobrą parzystość:

$$N_0^{(+)} = \sqrt{\frac{2}{1 + \exp(-\eta_3^2 \xi^2)}}$$
$$N_1^{(-)} = \sqrt{\frac{2}{1 + \exp(-\eta_3^2 \xi^2)(1 - 2\eta_3^2 \xi^2)}}$$

Wibracyjne funkcje kolektywne 2/2Stany tetraedralne – baza n.r. grupy T_d :

$$\begin{split} |A1\rangle &= 0.5 \, N_1^{(-)} (1 - C_i) \mathcal{T}(\dot{\bar{\alpha}}_{32}'') \frac{1}{\sqrt{2}} (b_{32}^{\dagger} - b_{3-2}^{\dagger}) |0\rangle \\ |T1;1\rangle &= 0.5 \, N_0^{(+)} (1 - C_i) \mathcal{T}(\dot{\bar{\alpha}}_{32}'') \frac{1}{\sqrt{2}} (b_{32}^{\dagger} + b_{3-2}^{\dagger}) |0\rangle \\ |T1;2\rangle &= 0.5 \, N_0^{(+)} (1 - C_i) \mathcal{T}(\dot{\bar{\alpha}}_{32}') \frac{1}{\sqrt{8}} (-\sqrt{5} b_{31}^{\dagger} + \sqrt{3} b_{3-3}^{\dagger}) |0\rangle \\ |T1;3\rangle &= 0.5 \, N_0^{(+)} (1 - C_i) \mathcal{T}(\dot{\bar{\alpha}}_{32}') \frac{1}{\sqrt{8}} (-\sqrt{5} b_{3-1}^{\dagger} + \sqrt{3} b_{33}^{\dagger}) |0\rangle \\ |T2;1\rangle &= 0.5 \, N_0^{(+)} (1 - C_i) \mathcal{T}(\dot{\bar{\alpha}}_{32}') \frac{1}{\sqrt{8}} (\sqrt{3} b_{3-1}^{\dagger} + \sqrt{5} b_{33}^{\dagger}) |0\rangle \\ |T2;3\rangle &= 0.5 \, N_0^{(+)} (1 - C_i) \mathcal{T}(\dot{\bar{\alpha}}_{32}') \frac{1}{\sqrt{8}} (\sqrt{3} b_{3-1}^{\dagger} + \sqrt{5} b_{3-3}^{\dagger}) |0\rangle \\ |T2;3\rangle &= 0.5 \, N_0^{(+)} (1 - C_i) \mathcal{T}(\dot{\bar{\alpha}}_{32}') \frac{1}{\sqrt{8}} (\sqrt{3} b_{3-1}^{\dagger} + \sqrt{5} b_{3-3}^{\dagger}) |0\rangle \\ |22/46\rangle \end{split}$$

N.r. a wzbudzenia

Reprezentacje są skorelowane z różnymi rodzajami wzbudzeń:

$$[\mathsf{A1}] \to \alpha_{32}'' \sim \operatorname{Im}(\alpha_{32}) \quad \leftarrow \mathrm{T}_d \text{ niezmiennik}$$

$$[\mathsf{T1}] o lpha'_{32} \sim \operatorname{Re}\left(lpha_{32}
ight) \quad \leftarrow \mathsf{R}(\pi/4) \mathrm{T}_{d} \mathsf{R}(-\pi/4)$$
 niezmiennik

 $[T2] \rightarrow \alpha_{30} \quad \leftarrow SO(2)$ niezmiennik

Wibracyjne elementy macierzowe 1/5

Kwadrupol-kwadrupol:

$$\begin{split} \langle q | Q_{22} | q \rangle &= \frac{3ZR_0^2}{4\pi} (\dot{\alpha}_{22} - \frac{20}{7\sqrt{5\pi}} \dot{\alpha}_{20} \dot{\alpha}_{22}) \\ \langle q | Q_{20} | q \rangle &= \frac{3ZR_0^2}{4\pi} (\dot{\alpha}_{20} + \frac{1}{\sqrt{5\pi}} (\frac{10}{7} \dot{\alpha}_{20}^2 - \frac{20}{7} \dot{\alpha}_{22} - \frac{2}{3\eta_3^2}) \end{split}$$

Tu:

$$\eta_3 = \sqrt{rac{B_3\omega_3}{\hbar}} = \sqrt{rac{C_3}{\hbar\omega_3}}.$$

Wibracyjne elementy macierzowe 2/5

Tetraedr-tetraedr:

$$egin{aligned} &\langle A1|Q_{20}|A1
angle = -rac{6ZR_0^2}{12\pi\sqrt{5\pi}}rac{1}{\eta_3^2} \ &\langle T1;1|Q_{20}|T1;1
angle = -rac{6ZR_0^2}{12\pi\sqrt{5\pi}}rac{1}{\eta_3^2} \ &\langle T2;1|Q_{20}|T2;1
angle = rac{6ZR_0^2}{12\pi\sqrt{5\pi}}rac{1}{\eta_3^2} \end{aligned}$$

Zależność tylko od drgań zerowych.

Wibracyjne elementy macierzowe 3/5

Przejścia z pasma $|A1\rangle$ do pasma kwadrupolowego:

$$\langle q | Q_{1\mu} | A1 \rangle = 0 \Rightarrow \text{nie ma przejść E1} \langle q | Q_{32} | A1 \rangle = +i N_1^{(-)} \frac{3ZR_0^3}{8\pi\sqrt{2}} \frac{2 - \eta_3^2 (\dot{\alpha}_{32}'')^2}{\eta_3} \exp\left(-\frac{\eta_2^2}{4}\beta_2^2 - \frac{\eta_3^2}{4} (\dot{\alpha}_{32}'')^2\right)$$

gdzie $\beta_2^2 = \sum_{\mu} |\dot{lpha}_{2\mu}|^2$.

Wibracyjne elementy macierzowe 4/5

Przejścia z pasma $|T1;1\rangle$ do pasma kwadrupolowego:

$$\langle q | Q_{10} | T1; 1 \rangle = N_0^{(+)} \frac{27\sqrt{3}ZR_0}{16\pi\sqrt{70\pi}} \frac{\dot{\alpha}_{22}}{\eta_3} \exp\left(-\frac{\eta_2^2}{4}\beta_2^2 - \frac{\eta_3^2}{4}(\dot{\alpha}_{32}'')^2\right) \langle q | Q_{32} | T1; 1 \rangle = N_0^{(+)} \frac{3ZR_0^3}{4\pi\sqrt{2}} \frac{1}{\eta_3} \exp\left(-\frac{\eta_2^2}{4}\beta_2^2 - \frac{\eta_3^2}{4}(\dot{\alpha}_{32}'')^2\right)$$

E1: prawie liniowa zależność od $\dot{\alpha_{22}}$.

Wibracyjne elementy macierzowe 5/5

Przejścia z pasma $|T2;1\rangle$ do pasma kwadrupolowego:

$$\langle q | Q_{10} | T2; 1 \rangle = N_0^{(+)} \frac{9\sqrt{3}ZR_0}{8\pi\sqrt{14\pi}} \frac{\dot{\alpha}_{20}}{\eta_3} \exp\left(-\frac{\eta_2^2}{4}\beta_2^2 - \frac{\eta_3^2}{4}(\dot{\alpha}_{32}'')^2\right) \langle q | Q_{30} | T2; 1 \rangle = N_0^{(+)} \frac{3ZR_0^3}{4\pi\sqrt{2}} \frac{1}{\eta_3} \exp\left(-\frac{\eta_2^2}{4}\beta_2^2 - \frac{\eta_3^2}{4}(\dot{\alpha}_{32}'')^2\right)$$

E1: Prawie liniowa zależność od $\dot{\alpha_{22}}$.

$\mathsf{Przejścia} \ A1 \to q$

Przejścia wewnątrzpasmowe:

$$B(E2;A1
ightarrow A1)\sim \eta_3^{-4}$$

Transitions from tetrahedralPrzejścia z A1 do pasma kwadrupolowego:

$$B(E1; A1 \rightarrow q) = 0$$

$$B(E3; A1 \to q) = |\langle q | Q_{32} | A1 \rangle|^2 |\langle R_{J'=0,q} | | D^{3\star}_{\cdot 2} | | R_{J=3,A1} \rangle - \langle R_{J'=0,q} | | D^{3\star}_{\cdot -2} | | R_{J=3,A1} \rangle |^2 /7 \neq 0$$

Przejścia $T1 \rightarrow q$

Przejścia wewnątrzpasmowe:

$$B(extsf{E2}; extsf{T1} o extsf{T1}) = B(extsf{E2}; extsf{T1} o extsf{T1}) \sim \eta_3^{-4}$$

Przejścia z T1 do pasma kwadrupolowego:

$$B(E1; T1
ightarrow q) \sim \left(rac{\dot{lpha}_{22}}{\eta_3}
ight)^2 = \left(rac{\dot{eta}\sin\dot{\gamma}}{\sqrt{2}\eta_3}
ight)^2$$

 $B(E3; T1 \to q) = |\langle q | Q_{32} | T1, 1 \rangle|^2$ $|\langle R_{J'=0,q} | | D^{3\star}_{\cdot 2} | | R_{J=3,T1} \rangle + \langle R_{J'=0,q} | | D^{3\star}_{\cdot -2} | | R_{J=3,T1} \rangle)|^2 /7 = 0$

(0 = wynik numerycznych obliczeń)

Przejścia $T2 \rightarrow q$

Przejścia wewnątrzpasmowe:

$${f B}({f E2};{f T2}
ightarrow{f T2})={f B}({f E2};{f T2}
ightarrow{f T2})\sim\eta_3^{-4}$$

Przejścia z T2 pasma kwadrupolowego:

$$B(E1; T2 \rightarrow q) \sim \left(\frac{\dot{lpha}_{20}}{\eta_3}\right)^2 = \left(\frac{\dot{eta}\cos\dot{\gamma}}{\eta_3}\right)^2$$

$$B(E3; T2 \rightarrow q) = |\langle q|Q_{30}|T2, 1\rangle\langle R_{J'=0,q}||D_{\cdot 0}^{3\star}||R_{J=3,T2}\rangle|^2/7$$

Widmo ¹⁵⁶Dy, Argone 2009

32/46

¹⁵⁶Dy, moment kwadrupolowy

 156 Dy \Rightarrow

- deformacja kwadrupolowa eta= 0.29, $\gamma=$ 0.02, $\eta_2=$ 14
- deformacja tetraedralna $\xi = 0.12$.

Wyliczony wewnętrzny moment kwadrupolowy pasma kwadrupolowego wynosi: $Q_0 = 670 \ e \cdot fm^2 \ (\eta_3 > 3)$. Eksperyment: $Q_0 = 611 \ e \cdot fm^2$.

¹⁵⁶Dy,E2/E1 dla T1

Rysunek: $B(E2; T1 \rightarrow T1)/B(E1; T1 \rightarrow q)$ dla ¹⁵⁶Dy.

156 Dy, E2/E1 dla T2

Rysunek: $B(E2; T2 \rightarrow T2)/B(E1; T2 \rightarrow q)$ dla ¹⁵⁶Dy

¹⁵⁶Dy, E3/E1 dla T2

Rysunek: B(E3; T2
ightarrow q)/B(E1; T2
ightarrow q) dla 156 Dy.

156
Dy, E1: T1 $ightarrow$ q

Rysunek: $B(E1; T1 \rightarrow q)$ dla ¹⁵⁶Dy.

¹⁵⁶Dy, E1: T2→q

Rysunek: $B(E1; T2 \rightarrow q)$ dla ¹⁵⁶Dy.

¹⁵⁶Gd, moment kwadrupolowy

 $^{156}\mathrm{Gd} \Rightarrow$

- deformacja kwadrupolowa eta= 0.28, $\gamma=$ 0.5, $\eta_2=$ 14
- deformacja tetraedralna $\xi = 0.12$.

Wyliczony wewnętrzny moment kwadrupolowy pasma kwadrupolowego wynosi:

 $egin{aligned} Q_0 &= 618 \; e \cdot fm^2 \; (\eta_3 > 3), \ Q_0 &= 275 \; e \cdot fm^2 \; (\eta_3 = 1), \ ext{Eksperyment:} \; Q_0 &= 683 \; e \cdot fm^2. \end{aligned}$

¹⁵⁶Gd, E2: T1 \rightarrow T1,T2 \rightarrow T2

¹⁵⁶Gd, E1: T1 \rightarrow q

Rysunek: B(E1;T1 \rightarrow q), ¹⁵⁶Gd; Eksp. $\sim 10^{-6}$

¹⁵⁶Gd, E1: T2 \rightarrow q

Rysunek: B(E1;T2 \rightarrow q), ¹⁵⁶Gd; Eksp. $\sim 10^{-6}$

^{156}Gd , E3: A1 \rightarrow q

Rysunek: B(E3;A1 \rightarrow q); jądro ¹⁵⁶Gd

$^{156}\text{Gd},$ E3: T1 $\rightarrow q,$ T2 $\rightarrow q$

156 Gd, < q|E2|q>, pasmo kwadrupolowe

SUMMARY

