COUPLED-CLUSTER THEORY: FROM QUANTUM CHEMISTRY TO APPLICATIONS IN NUCLEAR PHYSICS

Piotr Piecuch

Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA

Faculty of Physics, University of Warsaw, Warsaw, Poland, October 14th, 2010

MANY THANKS TO PROFESSORS WOJCIECH SATUŁA, MAREK PFŰTZNER, AND BOGUMIŁ JEZIORSKI FOR INVITATION AND SEMINAR ARRANGEMENTS

Contents

- 1. Many-Particle Schrödinger Equation. Importance of Many-Particle Correlation Effects.
- 2. Big Picture of Modern Coupled-Cluster Formalisms.
- 3. Single-Reference Coupled-Cluster Theory:
 - Arguments in Favor of the Exponential Wave Function Ansatz.
 - Cluster Amplitude and Energy Equations.
 - Examples of Useful Approximations: CCSD, CCSD(T), CR-CC(2,3).
 - Extensions of CCSD, CCSD(T), and CR-CC(2,3) to Large Molecular Systems.
 - Extension to Excited States, Valence Systems, and Properties via the Equation-of-Motion Formalism.
- 4. Applications of Modern Single-Reference Coupled-Cluster Methods to Nuclear Structure: Successes, Failures, and Challenges.
- 5. Extensions of Single-Reference Coupled-Cluster Theory to Quasi-Degenerate States:
 - 1. Multi-Reference Coupled-Cluster Theories.
 - 2. Active-Space Coupled-Cluster Methods.
 - 3. Externally Corrected Coupled-Cluster Approaches.

MANY-PARTICLE SCHRÖDINGER EQUATION

NUCLEAR PHYSICS: THE NUCLEAR SCHRÖDINGER EQUATION

 $H_n\Psi_\mu(\mathbf{X}) = E_\mu\Psi_\mu(\mathbf{X})$

$$\begin{split} H_n &= Z + V_2 + V_3(+???) = \sum_{i=1}^N z(\mathbf{x}_i) + \sum_{i>j=1}^N v_2(\mathbf{x}_i, \mathbf{x}_j) + \sum_{i>j>k=1}^N v_3(\mathbf{x}_i, \mathbf{x}_j, \mathbf{x}_k)(+???) \\ z(\mathbf{x}_i) &= \frac{p_i^2}{2m_i}, \quad v_2(\mathbf{x}_i, \mathbf{x}_j) = ? \text{ (Argonne } v_{18}, \text{ CD Bonn, Idaho-A, etc.),} \\ v_3(\mathbf{x}_i, \mathbf{x}_j, \mathbf{x}_k) &= ? \text{ (Tucson-Melbourne, Urbana IX, etc.)} \end{split} \text{ or NLO, N^2LO,}$$

QUANTUM CHEMISTRY: THE ELECTRONIC SCHRÖDINGER EQUATION

ALGEBRAIC APPROACH (IN CHEMISTRY, MOLECULAR ORBITAL THEORY)

$$\{\psi_r(\mathbf{x}), r = 1, 2, \ldots\} \equiv \mathcal{V}, \quad \dim \mathcal{V} = \infty$$

$$\Psi(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \sum_{r_1 > \cdots > r_N} c_{r_1\ldots r_N} \Psi_{r_1\ldots r_N}(\mathbf{x}_1,\ldots,\mathbf{x}_N)$$

$$\Psi_{r_1\dots r_N}(\mathbf{x}_1,\dots,\mathbf{x}_N) \equiv |\psi_{r_1}\dots\psi_{r_N}| = (N!)^{-\frac{1}{2}} \begin{vmatrix} \psi_{r_1}(\mathbf{x}_1) & \dots & \psi_{r_1}(\mathbf{x}_N) \\ \dots & \dots & \dots \\ \psi_{r_N}(\mathbf{x}_1) & \dots & \psi_{r_N}(\mathbf{x}_N) \end{vmatrix}$$

In practice: $\dim \mathcal{V} < \infty$

MOLECULAR ELECTRONIC STRUCTURE:

Molecular orbital (MO) basis set (usually, linear combination of atomic orbitals (LCAO) obtained with Hartree-Fock or MCSCF). Examples of AO basis sets: 6-311G++(2df,2pd), cc-pVDZ, MIDI, aug-cc-pVTZ.

NUCLEAR STRUCTURE:

Example: Harmonic-oscillator (HO) basis set.

The key to successful description of atoms, molecules, condensed matter systems, and nuclei is an accurate determination of the MANY-PARTICLE CORRELATION EFFECTS. INDEPENDENT-PARTICLE-MODEL APPROXIMATIONS, such as the Hartree-Fock method, ARE INADEQUATE

NUCLEAR STRUCTURE:

Binding energy of ⁴He (4 shells)

Method	Energy (MeV)
$\langle \Phi_{\sf osc} {\sf H}' \Phi_{\sf osc} angle$	-7.211
$\langle \Phi_{HF} H' \Phi_{HF} \rangle$	-10.520
CCSD	-21.978
CR-CCSD(T)	-23.524
Full Shell Model (Full Cl)	-23.484

Many-particle correlation problem in atoms, molecules, nuclei, and other many-body systems is extremely complex ... Dimensions of the full CI spaces for many-electron systems

	Number of correlated electrons						
Orbitals	6	8	10	12			
20	$379 imes 10^3$	$5.80 imes10^6$	$52.6 imes10^6$	$300 imes 10^6$			
30	4.56×10^6	$172 imes 10^6$	$4.04 imes10^9$	$62.5 imes 10^9$			
100	$6.73 imes 10^9$	3.20×10^{12}	$9.94 imes 10^{14}$	2.16×10^{17}			

Dimensions of the full shell model spaces for nuclei

Nucleus	4 shells	7 shells
⁴ He	4E4	9E6
⁸ B	4E8	5E13
¹² C	6E11	4E19
¹⁶ O	3E14	9E24

Full CI = Full Shell Model (=exact solution of the Schrödinger equation in a finite basis set) has a FACTORIAL scaling with the system size ("N! catastrophe")

APPROXIMATE METHODS THAT PROVIDE AN ACCURATE DESCRIPTION OF MANY-PARTICLE CORRELATION EFFECTS WITH RELATIVELY LOW COSTS ARE NEEDED **COUPLED-CLUSTER (CC) FORMALISMS**

SINGLE-REFERENCE (SR) CC

(single reference determinant)

•Ground-state CC

•Excited-state CC, EOMCC, response CC, SAC-CI

•Bi-variational CC, ECC

Renormalized CC, CR-CC

MULTI-REFERENCE (MR) CC

(multiple references; ground and excited states)

•Genuine:

Fock-space or valenceuniversal MRCC

Hilbert-space or stateuniversal MRCC

•State-selective or state-specific MRCC (several formulations)

EXTERNALLY-CORRECTED CC

(mix SRCC or MRCC with non-CC wave functions)

ACTIVE-SPACE CC or EOMCC

(mix SRCC/EOMCC with elements of MRCC)

GENERALIZED CC (???)

(single- or multi-determinantal reference, generalized form of the cluster operator adjusted to the Hamiltonian, virtually exact, but not well understood)

R3=R40.+. ReteRninRd diRectly frometheits dhatades & EOMACSD[C, ESDMCCSBDDQ etet.).] R = R, + Rtimater from Perturbation the perturbation of CSD (EA COMPCCOD (Sp-2h), State-universal multi-reference CC (SUMRCC) (SUMRCCSD, T3, T4, SUMRCCSD(1), CR-SUMRCC, MAISONARCSO, Fally-3b), SACC-CQ 4pebb), detc.] R_{3} , M_{1} , M_{1} , M_{1} , M_{2} , M $T_3, T_4, Brition manufement expansions concerts the concerts of the concert$ $R_3, R_4, R_{3p-2h}, R_{4p-3h}, R_{3h-2p}, R_{4h-3p}, \dots$ selected via active orbitals \Rightarrow active-space EOMCC methods [EOMCCSDt, EA/IP-EOMCCSDt, SAC-CI(4p-3h){ N_a , N_u }, SAC-CI(4h-3p){ N_a , N_u }, etc.] $R_3, R_4, T_3, T_4, \dots$ from moment expansions \Rightarrow CR-EOMCCSD(T), CR-EOMCC(2,3),

CR-EOMCC(2,4), MM-EOMCC(2,3), MM-EOMCC(2,4), etc.

SINGLE-REFERENCE COUPLED-CLUSTER (CC) THEORY

(F. Coester, 1958; F. Coester and H. Kümmel, 1960; J. Čížek, 1966,1969; J. Čížek and J. Paldus, 1971)

$$|\Psi\rangle = e^{T^{(A)}}|\Phi\rangle, \quad T^{(A)} = \sum_{k=1}^{m_A} T_k$$

 \leftarrow iterative N^6

iterative N⁷ or N⁹

plus non-

To reduce prohibitive computer costs of CCSDT, CCSDTQ, etc., one usually approximates T_3 , T_4 , etc. This can be done through, e.g., noniterative corrections to CCSD energies, as in the CCSD(T), CCSD(TQ), CR-CC(2,3), CR-CC(2,4), CCSD(2), etc. approximations.

Standard CC Equations (J. Čížek, 1966)

We do not minimize

$$E[\Psi] = \langle \Psi | H | \Psi \rangle / \langle \Psi | \Psi \rangle = \langle \Phi | (e^{T^{\dagger}} H e^{T})_{C} | \Phi \rangle,$$

which is a nonterminating series in T. We transform and project the Schrödinger equation.

$$H e^{T} |\Phi\rangle = E_{0} e^{T} |\Phi\rangle$$
$$e^{-T} H e^{T} |\Phi\rangle = E_{0} e^{-T} e^{T} |\Phi\rangle = E_{0} |\Phi\rangle$$
$$\bar{H} |\Phi\rangle = E_{0} |\Phi\rangle, \quad \bar{H} = e^{-T} H e^{T} = (H e^{T})_{C}$$

 \overline{H} is a finite series in T; for pairwise interactions,

 $\bar{H} = H + [H,T] + \frac{1}{2}[[H,T],T]] + \frac{1}{6}[[[H,T],T],T] + \frac{1}{24}[[[[H,T],T],T],T],T]$

$$\begin{split} & \mathsf{kp}\text{-}\mathsf{kh} \longrightarrow \langle \Phi_{i_1i_2\dots i_k}^{a_1a_2\dots a_k} | \left(H_N e^{T^{(A)}} \right)_C | \Phi \rangle = 0, \ k = 1 \dots, m_A \\ & E_0 = \langle \Phi | H | \Phi \rangle + \langle \Phi | \left(H_N e^{T^{(A)}} \right)_C | \Phi \rangle = \langle \Phi | H | \Phi \rangle + \langle \Phi | \left[H_N (T_1 + T_2 + \frac{1}{2}T_1^2) \right]_C | \Phi \rangle \end{split}$$

Iterative full methods: full CCSD, full CCSDT, full CCSDTQ, etc.

 $\begin{aligned} \mathsf{CCSD equations (one- and two-body terms in the Hamiltonian)} &- n_o^2 n_u^4 \ (\mathcal{N}^6) \\ \langle \Phi_i^a | (H_N e^{T_1 + T_2})_C | \Phi \rangle &\equiv \langle \Phi_i^a | [H_N (1 + T_1 + T_2 + \frac{1}{2}T_1^2 + T_1T_2 + \frac{1}{6}T_1^3)]_C | \Phi \rangle &= 0 \\ \langle \Phi_{ij}^{ab} | (H_N e^{T_1 + T_2})_C | \Phi \rangle &\equiv \langle \Phi_{ij}^{ab} | [H_N (1 + T_1 + T_2 + \frac{1}{2}T_1^2 + T_1T_2 + \frac{1}{6}T_1^3 \\ &+ \frac{1}{2}T_2^2 + \frac{1}{2}T_1^2T_2 + \frac{1}{24}T_1^4)]_C | \Phi \rangle = 0 \end{aligned}$

Iterative perturbative methods: CCSDT-n, CCSDTQ-n, etc.

Example: CCSDT-1 equations $-n_o^3 n_u^4 (\mathcal{N}^7)$ $\langle \Phi_i^a | [H_N(1+T_1+T_2+\frac{1}{2}T_1^2+T_3^{[2]}+T_1T_2+\frac{1}{6}T_1^3)]_C | \Phi \rangle = 0$ $\langle \Phi_{ij}^{ab} | [H_N(1+T_1+T_2+\frac{1}{2}T_1^2+T_3^{[2]}+T_1T_2+\frac{1}{6}T_1^3+\frac{1}{2}T_2^2+\frac{1}{2}T_1^2T_2+\frac{1}{24}T_1^4)]_C | \Phi \rangle = 0$ $T_3^{[2]} | \Phi \rangle = R_0^{(3)} (V_N T_2)_C | \Phi \rangle$

• Non-iterative perturbative methods: CCSD(T), $CCSD(TQ_f)$, $CCSDT(Q_f)$, etc.

Example: CCSD(T) method – iterative $n_o^2 n_u^4$ (\mathcal{N}^6) plus non-iterative $n_o^3 n_u^4$ (\mathcal{N}^7)

$$E_0^{(\text{CCSD}(\text{T}))} = E_0^{(\text{CCSD})} + E^{(\text{T})}$$
$$E^{(\text{T})} = \langle \Phi | (T_3^{[2]} + Z_3)^{\dagger} (V_N T_2)_C | \Phi \rangle$$

Arguments in favor of CC: Separability or size consistency (provided that the reference state separates correctly)

$$\begin{split} H_{\rm AB} &\to H_A + H_B \\ T = T_{\rm AB} \longrightarrow T_{\rm A} + T_{\rm B}, \quad [T_{\rm A}, T_{\rm B}] = 0 \\ e^{T_{\rm AB}} = e^{T_{\rm A}} e^{T_{\rm B}} \\ |\Psi_{\rm AB}\rangle = e^{T_{\rm AB}} |\Phi_{\rm AB}\rangle = e^{T_{\rm A}} |\Phi_{\rm A}\rangle e^{T_{\rm B}} |\Phi_{\rm B}\rangle = |\Psi_{\rm A}\rangle |\Psi_{\rm B}\rangle \\ E_{\rm AB} = \langle \Phi_{\rm AB} |H_{\rm AB} |\Psi_{\rm AB}\rangle = \langle \Phi_{\rm A} |H_{\rm A} |\Psi_{\rm A}\rangle \langle \Phi_{\rm B} |\Psi_{\rm B}\rangle + \langle \Phi_{\rm B} |H_{\rm B} |\Psi_{\rm B}\rangle \langle \Phi_{\rm A} |\Psi_{\rm A}\rangle = E_{\rm A} + E_{\rm B} \end{split}$$

Arguments in favor of CC: CC vs. Cl

$$|\Psi\rangle = (\underbrace{1 + C_1 + C_2 + \cdots} |\Phi\rangle) = \underbrace{e^{T_1 + T_2 + \cdots} |\Phi\rangle}_{CC \text{ expansion}}$$

$$T = \ln(1 + C) = \sum_{k=1}^{N} \frac{(-1)^{k-1}}{k} C^k$$
CIS = Cl(1p-1h) \longrightarrow

$$C_1 = T_1$$

$$C_2 = T_2 + \frac{1}{2}(T_1)^2$$

$$C_3 = T_3 + T_1T_2 + \frac{1}{6}(T_1)^3$$

$$C_3 = T_3 + T_1T_2 + \frac{1}{6}(T_1)^3$$
CISDTQ = Cl(4p-4h) \checkmark

$$C_4 = T_4 + \frac{1}{2}(T_2)^2 + T_1T_3 + \frac{1}{2}(T_1)^2 T_2 + \frac{1}{24}(T_1)^4, \text{ etc.}$$

 $T_4 \ll \frac{1}{2}T_2^2$

$\mathbf{CCSDT} \sim \mathbf{CISDTQ}$

CC up to 3p-3h excitations in $T \sim$ CI up to 4p-4h excitations in C

Arguments in favor of CC: Linked and connected cluster theorems

Linked cluster (diagram) theorem (Brueckner, 1955; Goldstone, 1957; Hubbard, 1957,1958; Hugenholtz, 1957)

$$\Psi^{(k)} = (R_0 W)^k \Phi_0 + \text{renormalization terms} \\ = \left[(R_0 W)^k \right]_{\text{linked}} \Phi_0, \quad (k = 1, 2, \ldots),$$

MBPT

$$\Delta E^{(k+1)} = \langle \Phi_0 | W(R_0 W)^k | \Phi_0 \rangle + \text{renormalization terms} \\ = \langle \Phi_0 | \left[W(R_0 W)^k \right]_{\text{connected}} | \Phi_0 \rangle, \quad (k = 1, 2, \ldots).$$

Connected cluster theorem (Hubbard, 1957, 1958)

$$\Psi = e^T \Phi, \quad T = \sum_{k=1}^{\infty} \sum_{C} \{ (R_0 W)^k \}_C$$

 $C \Leftrightarrow$ connected diagrams (including EPV terms)

CC THEORY LEADS TO SIZE-EXTENSIVE APPROXIMATIONS

Arguments in favor of CC: CC vs. MBPT

 $\Delta E^{\text{CCSD}} = \Delta E^{(2)} + \Delta E^{(3)} + \Delta E^{(4)}_{\text{SDQ}} + \cdots$ **CCSD** ~ **MBPT**(4)[**SDQ**] = **MP4**(**SDQ**)

 $\Delta E^{\text{CCSDT}} = \Delta E^{(2)} + \Delta E^{(3)} + \Delta E^{(4)} + \Delta E^{(5)}_{\text{SDT}} + \cdots$ CCSDT > MBPT(4)[SDTQ] = MBPT(4) = MP4

COUPLED-CLUSTER METHODS PROVIDE THE EXCELLENT COMPROMISE BETWEEN HIGH ACCURACY AND RELATIVELY LOW COMPUTER COST ...

	Equilibrium bond	l length (in	Å) and	harmonic vibrational frequency (in cm $^{-1}$) of N_2
_	Method	r_e	ω_e	Scaling
	DZP basis set	, 32 orbital	s, 2 Iow	est orbitals frozen
	CISD	1.1123	2444	$n_o^2 n_u^4$ (iterative)
	CISDT	1.1158	2409	$n_o^3 n_u^5$ (iterative)
\bigcap	CISDTQ	1.1264	2296	$n_o^4 n_u^6$ (iterative) $\leftarrow \mathcal{N}^{10}$
	MBPT(2)=MP2 MBPT(3)=MP3 MBPT(4)=MP4	1.1400 1.1126	2105 2480 2145	$n_o^2 n_u^2$ (noniterative) $n_o^2 n_u^4$ (noniterative) $n_o^3 n_u^4$ (noniterative)
\mathcal{N}	CCSD CCSD(T)	1.1333 1.1210 1.1269	2352 2287	$n_o^2 n_u^4$ (iterative) $n_o^2 n_u^4$ (iterative) $n_o^2 n_u^4$ (iterative) $+n_o^3 n_u^4$ (noniterative) $\leftarrow \mathcal{N}^6 + \mathcal{N}^7$
\bigvee	CCSDT-1	1.1275	2280	$n_o^3 n_u^4$ (iterative) $\leftarrow \mathcal{N}^7$
	CCSDT	1.1265	2294	$n_o^3 n_u^5$ (iterative) $\leftarrow \mathcal{N}^8$
	aug-cc-pVTZ basis	s set, 92 or	bitals, 2	lowest orbitals frozen

CCSD(T)1.1040 2340

/ /		
Experiment	1.0977	2359

EXAMPLES OF SINGLE-REFERENCE CC METHODS THAT ARE PARTICULARLY USEFUL

CCSD – basic CC method; recovers bulk, often >90%, of the correlation energy; also needed to define a posteriori T_3 corrections

 $E^{(\text{CCSD})} = E^{(\text{ref})} + \Delta E^{(\text{CCSD})}$

$$\Delta E^{(\text{CCSD})} = \sum_{i,a} f_i^{\ a} t_a^{\ i} + \sum_{i < j, a < b} v_{ij}^{\ ab} \tau_{ab}^{\ ij} \qquad \qquad \tau_{ab}^{\ ij} = t_{ab}^{\ ij} + t_a^{\ i} t_b^{\ j} - t_a^{\ j} t_b^{\ i}$$

CCSD(T) – CCSD plus correction due to T_3 , 'gold standard' of quantum chemistry; **CR-CC(2,3)** – CCSD plus correction due to T_3 , 'black-box' extension of CCSD(T) to single bond breaking and biradicals; recover >99 % of the correlation energy ('chemical accuracy')

$$E^{(\text{CR-CC}(2,3))} = E^{(\text{ref})} + \Delta E^{(\text{CR-CC}(2,3))} = E^{(\text{ref})} + \Delta E^{(\text{CCSD})} + \delta E^{(2,3)}$$
$$\delta E^{(2,3)} = \sum_{i < j < k, a < b < c} \ell^{abc}_{ijk} \mathbf{M}^{ijk}_{abc}$$

 $CR-CC(2,3) \qquad CCSD(T)$ $M_{abc}^{ijk} = \left\langle \Phi_{ijk}^{abc} \middle| \overline{H}^{(CCSD)} \middle| \Phi \right\rangle \qquad \overline{H}^{(CCSD)} = \left(He^{T_1+T_2} \right)_C = e^{-T_1-T_2} He^{T_1+T_2} \longrightarrow M_{abc}^{ijk} = \left\langle \Phi_{ijk}^{abc} \middle| (V_N T_2)_C \middle| \Phi \right\rangle$ $\ell_{ijk}^{abc} = \left\langle \Phi \middle| (1 + \Lambda_1 + \Lambda_2) \overline{H}^{(CCSD)} \middle| \Phi_{ijk}^{abc} \right\rangle / D_{abc}^{ijk} \qquad \ell_{ijk}^{abc} = \left\langle \Phi \middle| [(T_1^{\dagger}V_N)_{DC} + (T_2^{\dagger}V_N)_C] \middle| \Phi_{ijk}^{abc} \right\rangle / D_{abc}^{ijk}$ $= \left\langle \Phi \middle| [(\Lambda_1 \overline{H}_2^{(CCSD)})_{DC} + (\Lambda_2 \overline{H}_1^{(CCSD)})_{DC} + (\Lambda_2 \overline{H}_2^{(CCSD)})_C] \middle| \Phi_{ijk}^{abc} \right\rangle / D_{abc}^{ijk}$ $D_{abc}^{ijk} = E^{(CCSD)} - \left\langle \Phi_{ijk}^{abc} \middle| \overline{H}^{(CCSD)} \middle| \Phi_{ijk}^{abc} \right\rangle = -\sum_{n=1}^{3} \overline{H_n}^{(CCSD)} \qquad D_{abc}^{ijk} = \varepsilon_i + \varepsilon_j + \varepsilon_k - \varepsilon_a - \varepsilon_b - \varepsilon_c$

Example: The DBH24 Representative Benchmark Suite for Thermochemical Kinetics

	Database	Reaction	$V_f^{\ddagger { m a}}$	V_r^{\ddagger} a	•
		$\rm H + N_2O \rightarrow OH + N_2$	18.14	83.22	•
Heavy-Atom	HATBH6	$\rm H + ClH \rightarrow HCl + H$	18.00	18.00	
Transfer		$CH_3 + FCl \rightarrow CH_3F + Cl$	7.43	61.01	
		$Cl^CH_3Cl \rightarrow ClCH_3Cl^-$	13.61	13.61	
Nucleophilic	NHSBH6	$F^CH_3Cl \rightarrow FCH_3Cl^-$	2.89	29.62	
Substitution		$\mathrm{OH}^{\text{-}} + \mathrm{CH}_3\mathrm{F} \to \mathrm{HOCH}_3 + \mathrm{F}^{\text{-}}$	-2.78	17.33	
					(kcal/mol)
Unimologylar and		$H + N_2 \rightarrow HN_2$	14.69	10.72	
Association	UABH6	$H + C_2 H_4 \rightarrow CH_3 CH_2$	1.72	41.75	
		$HCN \rightarrow HNC$	48.16	33.11	
		OH + CH ₄ → CH ₃ + H ₂ O	6.7	19.6	
Hydrogen Transfer	HTBH6	$H + OH \rightarrow O + H_2$	10.7	13.1	
		$H + H_2S \rightarrow H_2 + HS$	3.6	17.3	

(J. Zheng, Y. Zhao, and D.G. Truhlar, J. Chem. Theory Comput., 2007)

Performance of various CC methods and basis sets for the DBH24 benchmark suite for thermochemical kinetics

	HAT	BH6	NSI	BH6	UAI	BH6	HTI	BH6	DBH24
Method	MSE	MUE	MSE	MUE	MSE	MUE	MSE	MUE	MUE
				MG3S					
CCSD	4.43	4.43	2.03	2.03	1.58	1.58	2.62	2.62	2.67
CCSD(T)	1.06	1.37	-0.25	0.94	0.53	0.53	1.04	1.10	0.98
CR-CC(2,3), A	1.63	1.76	0.03	0.75	0.76	0.76	1.23	1.23	1.12
CR-CC(2,3), B	1.85	1.91	0.22	0.63	0.80	0.80	1.29	1.29	1.16
CR-CC(2,3), C	1.28	1.49	-0.17	0.83	0.66	0.66	1.08	1.10	1.02
CR-CC(2,3), D	1.29	1.49	-0.18	0.83	0.65	0.65	1.08	1.10	1.02
				aug-cc-pV	TZ				
CCSD	3.54	3.54	1.66	1.66	1.03	1.11	1.72	1.72	2.01
CCSD(T)	0.01	0.91	-0.67	0.68	-0.06	0.40	-0.04	0.57	<mark>0.64</mark>
CR-CC(2,3), A	0.58	1.20	-0.39	0.44	0.17	0.47	0.15	0.62	<mark>0.68</mark>
CR-CC(2,3), B	0.80	1.32	-0.20	0.35	0.19	0.49	0.23	0.65	<mark>0.70</mark>
CR-CC(2,3), C	0.46	1.13	-0.70	0.77	0.16	0.48	0.11	0.64	0.75
CR-CC(2,3), D	0.46	1.13	-0.71	0.77	0.15	0.48	0.11	0.64	0.75
				aug-cc-pV(T	'+d)Z				
CCSD	3.41	3.41	1.82	1.82	1.03	1.11	1.69	1.69	2.01
CCSD(T)	-0.13	0.67	-0.53	0.62	-0.06	0.40	-0.06	0.54	0.56
CR-CC(2,3), A	0.45	0.88	-0.24	0.39	0.17	0.47	0.13	0.60	0.58
CR-CC(2,3), B	0.67	1.00	-0.05	0.30	0.19	0.49	0.20	0.63	0.61
CR-CC(2,3), C	0.30	0.80	-0.53	0.60	0.16	0.48	0.09	0.62	0.62
CR-CC(2,3), D	0.31	0.80	-0.54	0.60	0.15	0.48	0.09	0.62	0.62

(reported as errors relative to benchmark values in kcal/mol)

(J. Zheng, J.R. Gour, J.J. Lutz, M. Wloch, P. Piecuch and D.G. Truhlar, J. Chem. Phys., 2008)

Reactions relevant to gas-phase chemistry of SiC

(Y. Ge, M.S. Gordon, and P. Piecuch, J. Chem. Phys., 2007)

Example: Thermal Stereomutations of Cyclopropane

(A. Kinal, P. Piecuch, M.J. McGuire, and M. Włoch, in preparation)

CR-CC(2,3) : 63.3 kcal/mol

THE HNOO CONTROVERSY

- •LBSW: P. Ling, A.I. Boldyrev, J. Simons, and C.A. Wight, "Laser Photolysis of Matrix-Isolated Methyl Nitrate: Experimental and Theoretical Characterization of the Infrared Spectrum of Imine Peroxide (HNOO)," J. Am. Chem. Soc. 120, 12327 (1998).
- •LGDS: S.L. Laursen, J.E. Grace Jr., R.L. DeKock, and S.A. Spronk, "Reaction of NH (X) with Oxygen in a Solid Xenon Matrix: Formation and Infrared Spectrum of Imine Peroxide, HNOO," *J. Am. Chem. Soc.* 120, 12583 (1998).

Fundamental Frequency	Exp: LBSW	Exp.:LGDS	CCSD(T)	CR-CCSD(T)	CCSD(TQ _f)	CCSDT-3(Q _f)
v ₁ (NH stretch)	3287.7	3165.5	3189	3198	3188	3188
v ₂ (HNO bend)	not observed	1485.5	1492	1509	1494	1499
v ₃ (NO stretch)	1381.6	1092.3	1147	1116	1123	1126
v_4 (OO stretch)	843.2	1054.5	1042	1078	1047	1071
ν ₅ (NOO bend)	670.1	not observed	650	653	650	650
v ₆ (torsion)	790.7	764.0	764	777	757	757

R.L. DeKock, M.J. McGuire, P. Piecuch, W.D. ALLEN, H.F. SCHAEFER III, K. Kowalski, S.A. Kucharski, M. Musiał, A.R. Bonner, S.A. Spronk, D.B. Lawson, and S.L. Laursen, *J. Phys. Chem. A* (2004)

CAN WE EXTEND CC METHODS TO LARGE MOLECULAR SYSTEMS?

•CODE PARALLELIZATION

Example: CCSD(T) or CR-CC(2,3): CPU time scaling: N^7

In order to triple the system size without increasing the CPU time one needs $3^7 = 2187$ processors (assuming perfect scalability)

PARALLELIZATION ALONE IS NOT SUFFICIENT (!)

ONE MUST ATTACK INTRINSIC POWER SCALING LAWS CAUSED, IN PARTICULAR, BY THE USE OF DELOCALIZED MOLECULAR ORBITALS.

HINT:

ELECTRON CORRELATIONS IN NON-METALLIC SYSTEMS ARE LOCAL

USE LOCALIZED ORBITALS AND LIMIT EXCITATIONS TO LOCAL ORBITAL DOMAINS THAT (HOPEFULLY) DO NOT GROW WITH THE SYSTEM SIZE

•LOCAL CORRELATION METHODS AND LINEAR SCALING ALGORITHMS

LINEAR SCALING LOCAL CORRELATION CC METHODS: CLUSTER-IN-MOLECULE (CIM) CCSD, CCSD(T), AND CR-CC(2,3) APPROACHES

[W. Li, P. Piecuch, and J.R. Gour, AIP Proceedings, 2009; W. Li, P. Piecuch, J.R. Gour, and S. Li, J. Chem. Phys., 2009; W. Li, P. Piecuch, and J.R. Gour, Prog. Theor. Chem. Phys., 2009; W. Li and P. Piecuch, J. Phys. Chem. A, 2010 (x2)]

C_nH_{2n+2}, 6-31G(d)

	CC	SD It	CCSD (Correlation	Energy/H CB-CC	CR-CC(2	,3) Correlation	Energy/H
n	$n_0^{\rm CC}$	$n_{\rm u}$	Cononical	CIM	CIM CIM	(2,5) triples/C	CIM	ND Mof
10	Conor	ioo1	CIM	(derval 1) ^a	(level 2) ^a	CIM	(level M ^a	Stubsystems
12		183	(leyet2201	(leyet 2032	-1.72062	(1e.ve/114)8a	- (1evre160) a	-1.77180
12	8.8		3.3 (0.7)	3.6(0.7)%)	(9992%)	29.3 (6.5)	(120.01%)	(100,02%)
16	49	243	-2.29168	-2.28888	-2.28932	-2.35724	-2.35779	-2.35811
16	41.	3	3.1 (0.4)	8(99!88%)	(99.90%)	43.0 (4.8)	(100.02%)	(100.04%)
2200	6#3	2303	5- 2.8657 0	24.3.85.378	-[2].\$\$\$(8)]83	57.0-(5.2)	224.9.34(26.8)	-2.945438
-24	<u>[418</u>	81	7.2(0.4)	(99.86%)	(99.90%)	$\frac{7}{69.9(4.0)}$	289 3 (10.0)	19/55
24	$+73^{-11}$	363		-3.42639	-3.42772		-3.53049	-3.53167
28_{28}	<u>8103</u>	⁸] ₄₂₃	8.8 (0.6)	38.5.99501	$[15683]_{-3.99662}$	111.1 (8.2)	421.5(12.0) -4.11673	-4.11817
3322	\$27 30	0483	9.9 (0.6)	49- 8 .55302	[495695 1	101.1 (5.1)	4997.02972.0)	-4.204786

^a The numbers in parentheses represent the GRU innest the prime bic the ontelation suborgither targest and by the SIBA yapprovalue. In the total MIMethy $\sigma_{X_1} = \sigma_1 + \sigma_2 + \sigma$

LINEAR SCALING LOCAL CORRELATION CC METHODS: CLUSTER-IN-MOLECULE (CIM) CCSD, CCSD(T), AND CR-CC(2,3) APPROACHES

[W. Li, P. Piecuch, and J.R. Gour, AIP Proceedings, 2009; W. Li, P. Piecuch, J.R. Gour, and S. Li, J. Chem. Phys., 2009; W. Li, P. Piecuch, and J.R. Gour, Prog. Theor. Chem. Phys., 2009; W. Li and P. Piecuch, J. Phys. Chem. A, 2010 (x2)]

$C_n H_{2n+2}$, 6-31G(d)

LINEAR SCALING LOCAL CORRELATION CC METHODS: CLUSTER-IN-MOLECULE (CIM) CCSD, CCSD(T), AND CR-CC(2,3) APPROACHES

[W. Li, P. Piecuch, and J.R. Gour, AIP Proceedings, 2009; W. Li, P. Piecuch, J.R. Gour, and S. Li, J. Chem. Phys., 2009; W. Li, P. Piecuch, and J.R. Gour, Prog. Theor. Chem. Phys., 2009; W. Li and P. Piecuch, J. Phys. Chem. A, 2010 (x2)]

C_nH_{2n+2}, 6-31G(d)

(H₂O)₁₄

CIM CCSD level 3: 204-474 min; 21-89 min/subsystem

Canonical CCSD: 4045-4265 min

CIM CCSD level 1: 45-99 min; 3-10 min/subsystem CIM CCSD level 2: 74-229 min; 5-19 min/subsystem CIM CCSD level 3: 324-724 min; 28-67 min/subsystem

EXCITED STATES: EQUATION-OF-MOTION CC (EOMCC) THEORY, SYMMETRY-ADAPTED-CLUSTER CONFIGURATION INTERACTION APPROACH (SAC-CI), AND RESPONSE CC METHODS

(H. Monkhorst, 1977; D. Mukherjee and P.K. Mukherjee, 1979; H. Nakatsuji and K. Hirao, 1978; K. Emrich, 1981)

$$|\Psi_K\rangle = R_K |\Psi_0\rangle, \quad |\Psi_0\rangle = e^T |\Phi\rangle$$

 $T = T_1 + T_2 + \cdots, \quad R_K = R_{K,0} + R_{K,\text{open}}, \quad R_{K,\text{open}} = R_{K,1} + R_{K,2} + \cdots$

Example: EOMCC

In the exact theory,

$$(\bar{H}_{N,\text{open}} R_{K,\text{open}})_C |\Phi\rangle = \omega_K R_K |\Phi\rangle \text{ or } [\bar{H}_{N,\text{open}}, R_{K,\text{open}}] |\Phi\rangle = \omega_K R_K$$
$$\bar{H}_N = e^{-T} H_N e^T = (H_N e^T)_C, \quad \omega_K = E_K - E_0, \quad R_{K,\text{open}} = R_K - R_{K,0}$$

In approximate methods,

$$T \simeq T^{(A)} = \sum_{n=1}^{m_A} T_n, \quad R_K \simeq R_K^{(A)} = \sum_{n=0}^{m_A} R_{K,n} \quad (m_A < N)$$

Basic approximation: EOMCCSD

 $\begin{array}{l} m_A = 2: T = T_1 + T_2 \\ R_K = R_{K,0} + R_{K,1} + R_{K,2} \end{array} \qquad \quad \bar{\mathbf{H}}^{\text{CCSD}} = \begin{pmatrix} \bar{\mathbf{H}}_{\text{SS}} & \bar{\mathbf{H}}_{\text{SD}} \\ \bar{\mathbf{H}}_{\text{DS}} & \bar{\mathbf{H}}_{\text{DD}} \end{pmatrix}$

Higher-order iterative methods: EOMCCSDT, EOMCCSDTQ, etc., or noniterative corrections, such as CR-EOMCCSD(T), CR-EOMCC(2,3), etc.

Vertical excitation energies of CH⁺ and C₂ (in eV) [K. Kowalski and P. Piecuch, 2001, 2002]

System	State	Full CI	EOMCCSD	CC3	EOMCCSDT
CH^+	$2 \ ^{1}\Sigma^{+}$	8.549	0.560	0.230	0.074
	$3 \ {}^{1}\Sigma^{+}$	13.525	0.055	0.016	0.001
	$4 \ {}^{1}\Sigma^{+}$	17.217	0.099	0.026	-0.002
	$1 \ {}^{1}\Pi$	3.230	0.031	0.012	-0.003
	$2 \ ^{1}\Pi$	14.127	0.327	0.219	0.060
	$1 \ ^{1}\Delta$	6.964	0.924	0.318	0.040
	$2 \ ^{1}\Delta$	16.833	0.856	0.261	-0.038
C	1 111	1 205	0.000	0.060	0.024
\cup_2	1 1 1	1.385	0.090	-0.068	0.034
	$1 \Delta_q$	2.293	2.054	0.859	0.407
	$1 \ \Sigma_u^+$	5.602	0.197	-0.047	0.113
	$1 \ ^1\Pi_g$	4.494	1.708	0.496	0.088

Adiabatic excitation energies of the CH radical (in eV) [S. Hirata, 2004]

State	EOMCCSD	EOMCCSDT	EOMCCSDTQ	Experiment
a ${}^{4}\Sigma^{-}$	0.95	0.66	0.65	0.74
Α ² Δ	3.33	3.02	3.00	2.88
B ² Σ ⁻	4.41	3.27	3.27	3.23
C $^{2}\Sigma^{+}$	5.29	4.07	4.04	3.94

State	EOMCCSD	CR-EOMCCSD(T)	MRDCI	CASPT2	Expt.
$2 {}^{1}A_{1}^{\alpha}$	10.018 (9.951)	3.649 (3.582)	2.50		3.45–4.02 Huggins band
$2 \ {}^{1}A_{1}^{\beta}$	9.500 (9.433)	4.437 (4.370)	3.61		
$1 {}^{1}B_{2}$	4.871	4.520	4.34	3.87 (3.84)	4.13–6.20 Hartley band
$1 {}^{1}B_{1}$	2.288	2.174	1.82	1.67 (1.65)	1.46–2.82, 2.05 Chappuis band
$1 {}^{1}A_2$	1.668 (1.598)	1.615 (1.545)	1.44	1.20 (1.10)	1.46–2.82, 1.58 Chappuis band

Excited states of ozone: adiabatic excitation energies $T_{\rm e}~(T_{\rm 0})$

(K. Kowalski and P. Piecuch, J. Chem. Phys., 2004)

Properties (including density matrices)

 $|\Psi_K\rangle = R_K e^T |\Phi\rangle$

$$T = T_1 + T_2 + \cdots, \quad R_K = R_{K,0} + R_{K,\text{open}}, \quad R_{K,\text{open}} = R_{K,1} + R_{K,2} + \cdots$$
$$(\bar{H}_{N,\text{open}} R_{K,\text{open}})_C |\Phi\rangle = \omega_K R_K |\Phi\rangle \text{ or } [\bar{H}_{N,\text{open}}, R_{K,\text{open}}] |\Phi\rangle = \omega_K R_K$$
$$\bar{H}_N = e^{-T} H_N e^{T} = (H_N e^{T})_C, \quad \omega_K = E_K - E_0, \quad R_{K,\text{open}} = R_K - R_{K,0}.$$

$$\langle \Psi_K | = \langle \Phi | L_K e^{-T}$$
$$\langle \Phi | L_K R_{K'} | \Phi \rangle = \delta_{K,K'}$$
$$L_K = \delta_{K,0} + L_{K,\text{open}}, \quad L_{K,\text{open}} = L_{K,1} + L_{K,2} + \cdots$$
$$\langle \Phi | L_K \bar{H}_{N,\text{open}} = \omega_K \langle \Phi | L_K$$

For the ground (K = 0) state, $|\Psi_0\rangle = e^T |\Phi\rangle$, $\langle \Psi_0| = \langle \Phi|(1+\Lambda)e^{-T}$

$$\bar{H}_N |\Phi\rangle = \Delta E_0 |\Phi\rangle, \ \langle \Phi | (1+\Lambda) \,\bar{H}_N = \Delta E_0 \langle \Phi | (1+\Lambda)$$

Expectation values, transition matrix elements

$$\begin{split} \langle \Psi_K | \Theta | \Psi_{K'} \rangle &= \langle \Phi | L_K \bar{\Theta} R_{K'} | \Phi \rangle, \\ \bar{\Theta} &= e^{-T} \Theta e^T = (\Theta e^T)_C \end{split}$$

1-RDMs

$$\begin{split} \gamma^p_q(K,K') &\equiv \langle \Psi_K | a^p a_q | \Psi_{K'} \rangle = \langle \Phi | L_K \overline{a^p a_q} R_{K'} | \Phi \rangle, \\ \overline{a^p a_q} &= e^{-T} a^p a_q \ e^T \end{split}$$

2-RDMs

$$\begin{split} \gamma_{rs}^{pq}(K,K') &\equiv \langle \Psi_K | a^p a^q a_s a_r | \Psi_{K'} \rangle = \langle \Phi | L_K \overline{a^p a^q a_s a_r} R_{K'} | \Phi \rangle, \\ \overline{a^p a^q a_s a_r} &= e^{-T} (a^p a^q a_s a_r) e^T \end{split}$$

For example,

$$\langle \Psi_K | \Theta | \Psi_{K'} \rangle = \theta_p^q \, \gamma_q^p(K, K'), \quad \Theta = \theta_p^q a^p a_q$$
$$\gamma_K(\mathbf{x} | \mathbf{x}') = \sum_{p,q} \gamma_p^q(K, K) [\psi_p(\mathbf{x})]^* \psi_q(\mathbf{x}')$$

Dipole Moment Function of Ammonia

[From P. Piecuch, V. Špirko, and J. Paldus, Pol. J. Chem. 72 (7S), 1635 (1998)]

The vibrational transition moments	s $\langle v_2''; 0, 0 \hat{\mu}_z v_2'; 0, 0 angle$ of $^{14} m NH_3$ (in De	bye).
------------------------------------	--	-------

v_2''	v_2'	Exp.	CISD	$CASSCF^{c}$	Fit I	CCSD	${\rm LRCCSD}-{\rm Fit}I$
0^{+}	0^{-}	1.47147(6)	1.536	1.653	1.471	1.473	0.002
0^{+}	1^{-}	0.236(4)	0.258	0.236	0.237	0.245	0.008
0^{+}	2^{-}	0.011	0.007	0.002	0.000	0.004	0.004
$^{0-}$	1^+	0.248(7)	0.269	0.239	0.247	0.254	0.007
0^{-}	2^{+}	0.02261(21)	0.027	0.006	0.019	0.024	0.005
1^{+}	2^{-}	0.285(10)	0.313	0.335	0.287	0.296	0.009
1^{-}	2^{+}		0.557	0.442	0.525	0.532	0.007
2^{+}	2^{-}	1.02(18)	0.995	1.122	0.948	0.954	0.006

	${}^{4}\mathrm{He}$		$\hbar\Omega=10$	$\hbar\Omega=15$	$\hbar\Omega=20$	$\hbar\Omega=25$	$\hbar\Omega = 30$
Comparison of She	4 MS	Shell Model ^a	-24.894	-28.207	-28.164	-27.170	-25.869
Model and Coupled	_	CCSD	-24.606	-28.027	-28.033	-26.917	-25.308
Cluster Desults for th		$\operatorname{CR-CCSD}(T)_{\mathscr{L}}$	-24.822	-28.156	-28.118	-27.101	-25.766
Cluster Results for th	€ 5 MS	Shell Model ^a	-26.484	-28.336	-27.228	-25.900	-24.702
Total Binding Energi	es	CCSD	-26.156	-28.101	-27.015	-25.439	-23.738
of $4H_{0}$ and $16O$		$\operatorname{CR-CCSD}(T)_{\mathscr{L}}$	-26.365	-28.272	-27.175	-25.817	-24.602
	6 MS	Shell Model ^a	-26.604	-27.526	-26.189	-25.053	-24.147
(Argonne V _{8'})		CCSD	-25.860	-27.195	-25.903	-24.380	-22.755
	CR-CC(2,3)	\Rightarrow CR-CCSD(T) $_{\mathscr{L}}$	-26.396	-27.460	-26.134	-24.967	-24.077
(M Włoch P Piecuch M Horoi N	$7 \mathrm{MS}$	Shell Model ^a			-25.180		
Hjorth-Jensen, unpublished)		CCSD	-25.833	-26.256	-24.802	-23.385	-21.857
		$\operatorname{CR-CCSD}(T)_{\mathscr{L}}$	-26.447	-26.574	-25.147	-24.261	-23.762
			-				

^{16}O		$\hbar\Omega=10$	$\hbar\Omega=14$	$\hbar\Omega=16$	$\hbar\Omega=18$	$\hbar\Omega=20$
$4 \mathrm{MS}$	Shell Model ^a	-143.5	-165.5	-165.5	-161.5	-153.7
	CCSD	-144.448	-165.841	-165.67	-160.785	-152.87
	$\operatorname{CR-CCSD}(T)_{\mathscr{L}}$	-143.502	-165.106	-165.211	-160.744	-153.406
5 MS	Shell Model ^a	-132	-150.5	-149.6	-143	-136
	CCSD	-137.950	-151.909	-148.607	-141.997	-133.338
	$\operatorname{CR-CCSD}(T)_{\mathscr{L}}$	-138.107	-152.507	-149.626	-143.609	-136.338
6 MS	Shell Model ^a	-129	-142	-138.5	-134	-126
	CCSD	-150.582	-148.854	-139.943	-130.949	-122.801
	$\operatorname{CR-CCSD}(T)_{\mathscr{L}}$	-149.329	-149.42	-141.591	-133.716	-126.716

The coupled-cluster approach accurately reproduces the very expensive full shell model results at a fraction of a cost.

Ground and Excited States of ¹⁶O (Idaho-A, N³LO, G-matrix)

M. Włoch, D.J. Dean, J.R. Gour, M. Hjorth-Jensen, K. Kowalski, T. Papenbrock, and P. Piecuch, Phys. Rev. Lett., 2005.

Ground State

Idaho-A Binding Energy, No Coulomb: -7.46 MeV/nucleon (CCSD), -7.53 MeV/nucleon (CR-CCSD(T))

Approx. Coulomb: +0.7 MeV/nucleon

Idaho-A + Approx. Coulomb: -6.8 MeV/nucleon

N³LO (with Coulomb): -7.0 MeV/nucleon

Experiment: -8.0 MeV/nucleon (approx. -1 MeV due to three-body interations and, perhaps, remaining center-of-mass contaminations)

J=3- Excited State Idaho-A Excitation Energy: 11.3 MeV (EOMCCSD) 12.0 MeV (CR-EOMCCSD(T)) Experiment: 6.12 MeV (5-6 MeV difference due to three-body interactions and, to some extent, remaining center-of-mass contaminations)

Ground-state properties of ¹⁶O, Idaho-A

Ground and Excited States of Valence Nuclei Around ¹⁶O with Various Potentials

(J.R. Gour, P. Piecuch, M. Hjorth-Jensen, M. Włoch, and D.J. Dean, Phys. Rev. C, 2006)

Nucleus	N3LO	$\operatorname{CD-Bonn}$	V_{18}	Expt
^{15}O	6.158	6.643	4.789	7.464
$^{15}\mathrm{N}$	6.339	6.810	4.957	7.699
^{16}O	6.951	7.444	5.469	7.976
^{17}O	6.722	7.201	5.214	7.751
17 F	6.559	7.048	5.059	7.542

Binding Energy per Nucleon (MeV)

Excitation Energies (MeV)

		Interaction						
Excited state	N3LO	$\operatorname{CD-Bonn}$	V_{18}	Expt				
$^{15}O(3/2)_{1}^{-}$	6.264	7.351	4.452	6.176				
$^{15}N~(3/2)_{1}^{-}$	6.318	7.443	4.499	6.323				
$^{17}O(3/2)_1^+$	5.675	6.406	3.946	5.084				
$^{17}O(1/2)_1^+$	-0.025	0.311	-0.390	0.870				
${}^{17}\mathrm{F}~(3/2)_1^+$	5.891	6.677	4.163	5.000				
${}^{17}\mathrm{F}~(1/2)_1^+$	0.428	0.805	0.062	0.495				

- The non-local N³LO and CD-Bonn interactions give much stronger binding than the local Argonne V_{18} interaction.
- The different binding energies and spin-orbit splittings indicate that different potentials require different 3-body interactions. Excitation energies of the A=15 systems obtained with N³LO are excellent.
- The relative binding energies of these nuclei for the various potentials are in good agreement with each other and with experiment.

Return to 3⁻ state of ¹⁶O (J.R. Gour, P. Piecuch, M. Hjorth-Jensen, M. Włoch, and D.J. Dean, Phys. Rev. C, 2006)

(J.R. Gour, P. Piecuch, M. Hjorth-Jensen, M. Włoch, and D.J. Dean, Phys. Rev. C, 2006)

The 3⁻ state is dominated by a single excitation from the1p_{1/2} level to the 1d_{5/2} level. Thus, the energy difference between these shells gives a zero-order estimate of the excitation energy of the 3⁻ state.

(J.R. Gour, P. Piecuch, M. Hjorth-Jensen, M. Włoch, and D.J. Dean, Phys. Rev. C, 2006)

- The 3⁻ state is dominated by a single excitation from the1p_{1/2} level to the 1d_{5/2} level. Thus, the energy difference between these shells gives a zero-order estimate of the excitation energy of the 3⁻ state.
- Using the experimental and CC binding energies of the valence systems around ¹⁶O to determine this energy gap gives 11.5 and 15.8 MeV, respectively.

Ground State of ¹⁶O Using V_{UCOM}

(R. Roth, J.R. Gour, and P. Piecuch, Phys. Rev. C, 2009)

• Comparison of the CR-CC(2,3) and IT-CI(4p-4h)+MRD results with the Hartree-Fock basis for various model spaces

Open symbols: IT-Cl(4p-4h)+MRD Closed symbols: CR-CC(2,3)

Ground State of ¹⁶O Using V_{UCOM}

(R. Roth, J.R. Gour, and P. Piecuch, Phys. Rev. C, 2009)

• Analysis of the effect of Hartree-Fock vs. harmonic oscillator basis functions with the CC and IT-CI(4p-4h) approaches

Green: IT-CI(4p-4h) – HO Violet: IT-CI(4p-4h) – HF Light Blue: IT-CI(4p-4h)+MRD - HF

Ground State of ¹⁶O Using V_{UCOM}

(R. Roth, J.R. Gour, and P. Piecuch, Phys. Rev. C, 2009)

Experiment: -127.619 MeV. CBS-CR-CC(2,3) rough estimate: (-141) - (-131) MeV (7.976 MeV per nucleon) (8.2-8.8 MeV per nucleon)

Center-of-Mass (CM) Problem in Truncated CC and CI calculations: Ground States of ⁴He and ¹⁶O Using V_{UCOM}

(R. Roth, J.R. Gour, and P. Piecuch, Phys. Lett. B, 2009)

In the exact theory (equivalent to full CI in infinite basis set), the total wave function of the nucleus factorizes,

$$|\Psi\rangle = |\psi_{\rm int}\rangle \otimes |\psi_{\rm cm}\rangle$$

The same is true in NCSM calculations, but no longer generally true in truncated CC and CI calculations (even when basis set is infinitely large).

The Lawson prescription for suppressing the CM contaminations

$$H_{\beta} = H_{\rm int} + \beta H_{\rm cm}$$

$$H_{\text{int}} = (T - T_{\text{cm}}) + V = T_{\text{int}} + V, \quad T_{\text{int}} = \frac{1}{2mA} \sum_{i < j}^{A} (\mathbf{p}_{i} - \mathbf{p}_{j})^{2}$$
$$H_{\text{cm}} = \frac{1}{2mA} \mathbf{P}_{\text{cm}}^{2} + \frac{mA\Omega^{2}}{2} \mathbf{X}_{\text{cm}}^{2} - \frac{3}{2}\hbar\Omega$$

Some popular beliefs:

•The effect of the CM contaminations varies as 1/A, so the problem is limited to light nuclei.

•CC methods, accounting for higher-order correlation effects beyond a CI model space truncated at the same excitation level via products of cluster operators, have smaller CM contaminations than the analogous CI methods.

•The smallness of the expectation value of H_{cm} for sufficiently large β guarantees the decoupling of the CM and intrinsic degrees of freedom.

•The expectation value of H_{cm} at β =0 provides a quantitative measure of the impact of CM contamination on intrinsic observables.

Center-of-Mass Diagnostics

(R. Roth, J.R. Gour, and P. Piecuch, Phys. Lett. B, 2009)

Primary diagnostic: $\Delta \langle H_{\text{int}} \rangle_{\beta} = \langle H_{\text{int}} \rangle_{\beta} - \langle H_{\text{int}} \rangle_{0}$, where $\langle H_{\text{int}} \rangle_{\beta} = E_{\beta} - \beta \langle H_{\text{cm}} \rangle_{\beta}$ [when the many-body state $|\Psi\rangle$ factorizes, $\Delta \langle H_{\text{int}} \rangle_{\beta} = 0$]

Secondary diagnostic: $\langle H_{\rm cm} \rangle_{\beta}$, $\beta > 0$ [when the many-body state $|\Psi\rangle$ factorizes, $\langle H_{\rm cm} \rangle_{\beta}$ vanishes]

WARNING: $\langle H_{\rm cm} \rangle_{\beta=0}$ DOES NOT PROVIDE DEFINITIVE INFORMATION, SINCE IT CAN ASSUME ANY POSITIVE VALUE FOR FACTORIZABLE MANY-BODY STATES

Example: Ground State of ¹⁶O Using V_{UCOM}

(R. Roth, J.R. Gour, and P. Piecuch, Phys. Lett. B, 2009)

0.00112		~	$\beta =$: 0	$\beta =$	10
Method	$\hbar\Omega$	$e_{\rm max}$	$\langle H_{\rm int} \rangle$	$\langle H_{\rm cm} \rangle$	$\Delta \langle H_{\rm int} \rangle$	$\langle H_{\rm cm} \rangle$
IT-CI(4 <i>p</i> 4 <i>h</i>)	22	4	-94.80	0.45	0.93	0.10
_		5	-103.62	0.51	1.03	0.10
		6	-110.14	0.37	1.57	0.09
		7	-115.03	0.37	1.92	0.08
	30	4	-87.65	0.81	1.28	0.18
		5	-98.67	1.47	1.56	0.18
		6	-104.24	1.25	1.84	0.16
		7	-108.43	1.30	2.17	0.15
	38	4	-58.62	1.24	2.43	0.34
		5	-74.75	2.61	1.87	0.35
		6	-79.52	2.43	1.49	0.32
		7	-83.72	2.73	2.58	0.31
		8	-85.81	2.56	2.41	0.30
		9	-88.81	2.62	3.21	0.28
CR-CC(2,3)	22	4	-98.10	1.06	1.30	0.10
		5	-108.12	2.60	1.45	0.11
		6	-114.81	1.96	1.24	0.13
		7	-120.21	2.29		
	30	4	-97.78	0.62	2.15	0.16
		5	-113.14	5.38	1.91	0.20
		6	-119.92	4.62	1.67	0.24
		7	-125.92	7.45		
	38	4	-84.16	10.74	5.63	0.26
		5	-109.77	6.46	2.10	0.38
		6	-117.62	5.09	1.70	0.47
		7	-126.16	14.51		

Lesson 2: The value of $\langle H_{\rm cm} \rangle_{\beta=0}$ cannot be used to quantify the degree of CM contaminations.

Lesson 3: The CM contaminations may remain substantial for larger singleparticle basis sets.

Lesson 4: The inclusion of higher-order correlation effects via the exponential CC ansatz does not necessarily reduce the CM contaminations compared to the analogous CI calculations.

Example: Ground State of ⁴He Using VUCOM

(R. Roth, J.R. Gour, and P. Piecuch, Phys. Lett. B, 2009)

			$\beta =$	0	$\beta =$	10
Method	$\hbar\Omega$	$e_{\rm max}$	$\langle H_{\rm int} \rangle$	$\langle H_{\rm cm} \rangle$	$\Delta \langle H_{\rm int} \rangle$	$\langle H_{\rm cm} \rangle$
IT-CI(4 <i>p</i> 4 <i>h</i>)	30	4	-25.992	3.638	0.568	0.027
		5	-26.809	1.149	0.311	0.028
		6	-27.412	2.524	0.190	0.017
		7	-27.758	1.978	0.113	0.017
		8	-28.021	1.799	0.121	0.017
	38	4	-26.313	3.372	0.641	0.030
		5	-27.184	0.911	0.464	0.040
		6	-27.777	3.234	0.203	0.020
		7	-28.055	2.612	0.213	0.021
		8	-28.192	3.254	0.159	0.019
CCSD	30	4	-25.537	3.639	0.699	0.038
		5	-26.319	2.465	0.585	0.027
		6	-26.887	2.976	0.493	0.024
	38	4	-25.679	8.158	1.069	0.046
		5	-26.413	6.346	0.952	0.039
		6	-27.035	8.965	0.924	0.023
CR-CC(2,3)	30	4	-25.995	4.049	0.694	0.047
		5	-26.867	2.291	0.605	0.042
		6	-27.536	3.347	0.556	0.039
	38	4	-26.390	6.282	0.901	0.070
		5	-27.261	3.575	0.810	0.073
		6	-27.975	7.641	0.766	0.058

Lesson 5: The popular belief that the CM contaminations are suppressed as 1/A is questionable; other factors, such as the accuracy of a given many-body method relative to full CI may counteract a 1/A scaling [e.g., for the 4-particle ⁴He system, the CR-CC(2,3) and IT-CI(4p4h) methods in the limit of an infinite single-particle basis set lead to virtually exact and factorized wave functions in spite of the lightness of ⁴He; the same approaches are not exact for the heavier ¹⁶O, leading to substantial CM contaminations].

Coupled-Cluster Calculations for ⁵⁶Ni

• The calculations were performed within the *pf* shell, making it possible to perform full CI calculations for comparison

Unoccupied states: 2p_{3/2}, 1f_{5/2}, 2p_{1/2}

Occupied states: 1f_{7/2}

 Calculations were performed using the GXPF1A effective Hamiltonian, which is parameterized to fit experimental data for a variety of nuclei in the A=47 to A=66 region

Coupled-Cluster Calculations for ⁵⁶Ni

Excitations in ⁵⁷Ni

	ΔG	-2	-1	0	1	2	
$(5/2)^{-}$	$\operatorname{PA-EOMCCSD}(2p\text{-}1h)$	0.658	0.819	0.895	0.937	0.961	
	PA-EOMCCSD(3p-2h)	0.625	0.771	0.856	0.908	0.939	N ⁷
	CISD	0.808	0.856	0.897	0.927	0.948	
	CISDT	0.777	0.827	0.878	0.917	0.944	
	CISDTQ	0.688	0.776	0.852	0.904	0.937	N ¹⁰
	Full CI	-0.12	0.402	0.825	0.900	0.936	
$(1/2)^{-}$	$\operatorname{PA-EOMCCSD}(2p\text{-}1h)$	1.259	1.494	1.639	1.739	1.813	
	$\operatorname{PA-EOMCCSD}(3p\text{-}2h)$	0.669	1.071	1.366	1.562	1.694	N ⁷
	CISD	1.275	1.451	1.592	1.699	1.781	
	CISDT	1.005	1.218	1.426	1.588	1.706	
	CISDTQ	0.759	1.021	1.312	1.530	1.676	N ¹⁰
	Full CI	0.046	0.434	1.184	1.496	1.665	

J. R. Gour, M. Horoi, P. Piecuch, B. A. Brown, Phys. Rev. Lett. 2008

Single-reference CC methods can be very successful, but there are situations where one has to use multi-reference approaches: Example: excited states of metallic clusters (Be₃)

(K. Kowalski et al., J. Chem. Phys. 2005, P. Piecuch et al., Int. J. Quantum Chem., 2006)

State	Full CI	EOMCCSD	CR-EOMCCSD(T)
$X \ ^1A_1'$	-43.882330	-43.864904	-43.873110
$1 \ {}^{1}E''$	1.67 (S)	1.718	1.647
$1 \ {}^{1}A_{1}''$	1.78 (D)		
$1 \ {}^{1}E'$	2.04 (S)	2.122	1.988
$2 \ {}^{1}E''$	2.61 (D)		
$2 {}^{1}E'$	2.68 (D)	9.315	3.032
$1 \ {}^{1}A'_{2}$	2.89 (S)	2.932	2.790
$2 {}^{1}A'_{1}$	2.91 (S)	3.029	2.896
$3 \ {}^{1}E''$	3.04 (D)	4.232	3.546
$3 \ {}^{1}E'$	3.08 (D)	4.823	3.338
$1 \ {}^{1}A_{2}''$	3.16 (S,D)	3.993	3.358
$2 {}^{1}A_{1}''$	3.31 (D)	5.271	3.601
$4 {}^{1}E'$	3.48 (D)	4.570	3.633
$3 {}^{1}A'_{1}$	3.64 (D)	4.935	4.033
$4 \ {}^{1}E''$	3.90 (D)	5.286	3.954
$3 {}^{1}A_{1}''$	3.99 (S,D)	4.244	3.891
$2 {}^{1}A_{2}''$	4.12 (D)	5.995	4.384

Av. errors (eV): 1.33

MULTI-REFERENCE COUPLED-CLUSTER FORMALISMS

Single-Reference

 $\mathcal{M}_{0} = \operatorname{span} \{ |\Phi\rangle \}$ $H |\Psi\rangle = E |\Psi\rangle$ $\mathcal{M} = \operatorname{span} \{ |\Psi\rangle \}$ $U : \mathcal{M}_{0} \longrightarrow \mathcal{M}$ $|\Psi\rangle = U |\Phi\rangle$ $U = e^{T} |\Phi\rangle \langle \Phi |$

Multi-Reference

$$\mathcal{M}_{0} = \operatorname{span} \{ |\Phi_{1}\rangle, |\Phi_{2}\rangle, \dots, |\Phi_{M}\rangle \}$$

$$H|\Psi_{K}\rangle = E_{K}|\Psi_{K}\rangle \quad (K = 1, 2, \dots, M)$$

$$\mathcal{M} = \operatorname{span} \{ |\Psi_{1}\rangle, |\Psi_{2}\rangle, \dots, |\Psi_{M}\rangle \}$$

$$U: \mathcal{M}_{0} \longrightarrow \mathcal{M} \qquad M$$

$$|\Psi_{K}\rangle = U|\chi_{K}\rangle = U(\sum_{p=1}^{M} c_{p,K}|\Phi_{p}\rangle)$$

$$U = ???$$

BLOCH WAVE OPERATOR FORMALISM, GENUINE MRCC THEORIES

$$|\chi_K\rangle = P|\Psi_K\rangle = \sum_{p=1}^M c_{p,K} |\Phi_p\rangle, \quad P = \sum_{p=1}^M |\Phi_p\rangle \langle \Phi_p|$$
$$|\Psi_K\rangle = U|\chi_K\rangle = U\left(\sum_{p=1}^M c_{p,K} |\Phi_p\rangle\right) = \sum_{p=1}^M c_{p,K} U|\Phi_p\rangle$$

$$U \downarrow \mathcal{M}_0 \equiv (P \downarrow \mathcal{M})^{-1} : \mathcal{M}_0 \to \mathcal{M}, \quad U \downarrow \mathcal{M}_0^{\perp} \equiv 0$$

UP = U, PU = P (intermediate normalization condition), $U^2 = U$

UHU = HU (generalized Bloch equation) $H^{\text{eff}} |\chi_K\rangle = E_K |\chi_K\rangle, \quad H^{\text{eff}} = PHU = PHUP$

Genuine MRCC Theories

 Fock-space (valence-universal) methods - VUMRCC (Mukherjee, Lindgren, Pal, Kutzelnigg, Kaldor, Meissner, Bartlett, Stolarczyk, Monkhorst, and others) (1974/75 -)

$$U^{(n)} = \Omega P^{(n)} : \mathcal{M}_0^{(n)} \longrightarrow \mathcal{M}^{(n)}, \quad (n = N, N - 1, \ldots)$$

For example, Lindgren's ansatz: $\Omega = \mathbf{e}^S \equiv N[e^S]$

Hilbert-space (state-universal) methods - SUMRCC

The Jeziorski-Monkhorst ansatz:

$$U = \sum_{p=1}^{M} e^{T^{(p)}} |\Phi_p\rangle \langle \Phi_p|$$
(1981)
$$|\Psi_K\rangle = \sum_{p=1}^{M} c_{pK} e^{T^{(p)}} |\Phi_p\rangle$$

Piecuch, Paldus, and Jeziorski *et al.* spin-adapted SUMRCCSD (1988-1995) Meissner, Kucharski, and Bartlett *et al.* spin-orbital SUMRCCSD

The X ${}^{3}B_{1}(1 {}^{3}B_{1}) - A {}^{1}A_{1}(1 {}^{1}A_{1})$ and 1 ${}^{1}A_{1} - 2 {}^{1}A_{1}$ energy gaps in methylene (CH₂) Active orbitals: HOMO (3a₁), LUMO (1b₁); two active electrons

[Piecuch, Li, and Paldus, 1994; Piecuch and Landman, 2000, Kowalski and Piecuch, 2001]

Vertical excitation energies (eV), DZP (4s2p1d/2s1p) basis set

Excitation	SUMRCCSD	Full CI
$1 \ {}^{3}B_{1} \rightarrow 1 \ {}^{1}A_{1}$	0.521	0.519
$1 {}^{1}A_{1} \rightarrow 2 {}^{1}A_{1}$	4.623	4.596

The adiabatic singlet-triplet (X ${}^{3}B_{1} - A {}^{1}A_{1}$) energy gap, 5s4p3d2f1g/3s2p1d basis

$T_e^{ m nr,BO}$	9.473 kcal/mol (3315 cm $^{-1}$)			
ZPEs	-0.363 kcal/mol (-127 cm $^{-1}$)			
REs	-0.044 kcal/mol (-15 cm $^{-1}$)			
BODC	-0.114 kcal/mol (-40 cm $^{-1}$)			
Theoretical T ₀	8.952 kcal/mol (3133 cm ⁻¹) \leftarrow 14 cm ⁻¹			
Experimental T ₀	8.992 ± 0.014 kcal/mol (3147 ± 5 cm ⁻¹) 9.017 ± 0.014 kcal/mol (3156 ± 5 cm ⁻¹) 9.043 ± 0.057 kcal/mol (3165 ± 20 cm ⁻¹)			
	······································			

The singlet-triplet $(X {}^{3}B_{1} - A {}^{1}A_{1})$ separation in CH₂ in different calculations (kcal/mol)

Basis	Method	$T_e^{\rm nr,BO}$
[5s4p3d2f1g/4s3p2d]	CASSCF/SO CI	9.23
[5s4p3d2f1g/3s2p1d]	CASSCF/MR CI	9.27
[9s7p2d1f/5s2p]	CMR CI	9.8
	SDTQ MBPT(4)	11.46
	SR CCSDT-1	10.10
[6s5p4d3f2g1h/5s4p3d2f1g]	UCCSD	10.30
	RCCSD	10.08
[7s6p5d4f3g/6s5p4d3f]	UCCSD	10.27
	RCCSD	10.05
[5s4p3d2f1g/3s2p1d]	SCF	24.79
	SS/SUMRCCSD	9.47
	experiment	9.37
${}^{3}B_{1}$	${}^{1}A_{1}$	
SS CCSD 15713	SU CCSD 2	2611
(10607)	(1	5142)
MR CI 217908	MR CI 15	8104

The SUMRCCSD method can provide nice results ... but there are problems, such as, for example,

•intruder multiple solutions; very hard to eliminate in genuine MRCC methods. Among the solutions: the general model space SUMRCC methods of Li and Paldus, the Brillouin-Wigner MRCC theory of Hubač, Pittner, Čarsky, and co-workers, the state-selective MRCC method of Mukherjee et al. (pursued by Mukherjee, Evangelista, Allen, Schaefer III, Gauss, and co-workers), the MRexpT approach of Hanrath et al., and the active-space CC methods of Piecuch, Adamowicz, and co-workers.

•large inaccuracies produced by the use of inadequate model spaces, and, in some cases, neglect of higher-than-two-body clusters. Among useful solutions: renormalized corrections to SUMRCC energies due to higher-order excitations of Kowalski and Piecuch (multi-reference analogs of CR-CCSD(T), etc.).

•excessive number of cluster operators or amplitudes when larger model spaces are used. The general model space SUMRCC methods of Li and Paldus and the SUMRCCSD(1) approach of Kowalski and Piecuch.

DEALING WITH INTRUDERS USING ACTIVE-SPACE CC/EOMCC APROACHES FOR QUASI-DEGENERATE STATES (CCSDt, CCSDtq, EOMCCSDt, etc.)

[state-selective MRCC methods exploiting a single-reference formalism]

[Piecuch, Oliphant, and Adamowicz, 1993, Piecuch, Kucharski, and Bartlett, 1998, Kowalski and Piecuch, 2001, Gour, Piecuch, and Włoch, 2005, 2006]

REPRESENTATIVE APPROXIMATIONS: CCSDt OR SSMRCCSD(T) AND EOMCCSDt

$$T^{\text{int}} = T_1^{\text{int}} + T_2^{\text{int}} + T_3^{\text{int}}, \quad T^{\text{ext}} = T_1^{\text{ext}} + T_2^{\text{ext}} + T_3^{\text{ext}} (\begin{array}{c} ab\mathbf{C} \\ \mathbf{I}jk \end{array})$$

$$\begin{split} T^{\text{CCSDt}} &= T_1 + T_2 + T_3 \left(\begin{array}{c} ab\mathbf{C} \\ \mathbf{I}jk \end{array} \right), \quad R_K^{\text{CCSDt}} = R_{K,0} + R_{K,1} + R_{K,2} + R_{K,3} \left(\begin{array}{c} ab\mathbf{C} \\ \mathbf{I}jk \end{array} \right) \\ \\ \bar{\mathbf{H}}^{\text{CCSDt}} &= \left(\begin{array}{c} \bar{\mathbf{H}}_{\mathbf{SS}} & \bar{\mathbf{H}}_{\mathbf{SD}} & \bar{\mathbf{H}}_{\mathbf{St}} \\ \bar{\mathbf{H}}_{\mathbf{DS}} & \bar{\mathbf{H}}_{\mathbf{DD}} & \bar{\mathbf{H}}_{\mathbf{Dt}} \\ \\ \bar{\mathbf{H}}_{\mathbf{tS}} & \bar{\mathbf{H}}_{\mathbf{tD}} & \bar{\mathbf{H}}_{\mathbf{Dt}} \\ \\ \bar{\mathbf{H}}_{\mathbf{tS}} & \bar{\mathbf{H}}_{\mathbf{tD}} & \bar{\mathbf{H}}_{\mathbf{tt}} \end{array} \right), \quad \bar{H} = e^{-T} H e^T = (H e^T)_C \end{split}$$

Other approximations: SSMRCCSD(TQ) or CCSDtq, EOMCCSDtq, etc.

Because of the use of active orbitals, the numbers of t, q, ... excitations are small fractions (a few %) of all T, Q, ... excitations.

EXAMPLE: Bond breaking in F₂

(K. Kowalski and P. Piecuch, Chem. Phys. Lett., 2001; P. Piecuch et al., Chem. Phys. Lett., 2005)

-199.00

-199.00 CCSD(TQ) Potential energy curves for F₂/cc₁p)/DZ_Differences with CCSDT (in millihartree)

Method	0.75 <i>R</i> e	R _e	1.25 <i>R</i> _e	1.5 <i>R</i> _e	1.75 <i>R</i> e	$2R_{\rm e}$	$3R_{\rm e}$	$5R_{\rm e}$
CCSDT ^a	-198.922138	-199.102796	-199.085272	-199.065882	-199.059433	-199.058201	-199.058511	-199.058586
CCSD	4.504	9.485	19.917	32.424	41.184	45.638	49.425	49.816
CCSD(T) ^a	0.102	0.248	-0.503	-5.711	-15.133	-23.596	-35.700	-39.348
CR-CCSD(T) ^a	0.709	1.799	4.482	7.408	8.636	8.660	7.460	6.350
$LR-CCSD(T)^{b}$	0.540	1.260	2.801	3.601	2.465	0.693	-2.859	-4.518
$\text{CCSD}(2)_{\text{T}}^{\text{c}}$	0.460	1.398	3.698	5.984	6.637	6.357	4.976	3.895
CR-CC(2,3)	-0.289	-0.240	0.707	1.735	1.971	1.862	1.643	1.613
CCSDt ^a	2.677	2.297	1.907	1.720	1.730	1.789	1.889	1.891

Ground and excited states of Be₃

(K. Kowalski et al., J. Chem. Phys. 2005, P. Piecuch et al., Int. J. Quantum Chem., 2006)

EXTERNALLY CORRECTED CC APPROACHES

An alternative to active-space CC or state-specific MRCC approaches (J. Paldus, M. Takahashi, J. Čížek, P. Piecuch, X. Li, J. Planelles, et al.; L. Stolarczyk et al.)

 $\langle \Phi_i^a | \mathbf{CCSD} + (H_N T_3)_C | \Phi \rangle = 0$ $\langle \Phi_{ij}^{ab} | \mathbf{CCSD} + [H_N (T_3 \neq T_1 T_3 \neq T_4)]_C | \Phi \rangle = 0$

$$E = \langle \Phi | H | \Phi \rangle + \langle \Phi | [H_N(T_1 + T_2 + \frac{1}{2}T_1^2)]_C | \Phi \rangle$$

In estandardly CCSR creel regRE two quatiplest corrections disprese projections on pigiest ibas - 2p - 12ig less item dependent of the correct of the corr

Based on the observation: T_3 , T_4 extracted from full CI \implies E becomes exact.

Singlet-triplet (a ${}^{1}\Sigma - X {}^{3}\Pi$) gap in BN/cc-pVxZ, x=D,T,Q,5 (unusally large and very difficult to balance T_{3} and T_{4} effects)

	$X^3\Pi$		a	$a^1\Sigma$		T_e				
Method	R_{e}	ω_e	R_e	ω_e	x=D	x=T	x=Q	x=5		
CCSD	1.317	1586	1.272	1705	4196	4391	4459	4471]	
$\operatorname{CCSD}(T)$	1.329	1510	1.269	1739	-34	-92	-94	-87	Ī	
CCSDT	1.330	1512	1.277	1702			844	1	_	
CR-CC(2,3)	1.329	1518	1.281	1686	404	666	817	919		
CR-CC(2,4)					253	289	323	(337)]	
RMR $CCSD(T),A$	1.329	1510	1.277	1691	361	264	267	269	$\ $	
RMR CCSD(T),B	1.330	1509	1.277	1700	548	422	408	406		
Experiment	1.329	1519.2	1.275	1705.4		15-182				
		1496	1.274	1700.9		153				

(X. Li, J.R. Gour, J. Paldus, and P. Piecuch, Chem. Phys. Lett., 2008)

MRCI-corrected CCSD, augmented with the dynamical T₃ effects that are not present in MRCI

Our MSU Group and Collaborators

Present Members:

- Dr. Wei Li, Postdoctoral Research Associate (2007-2010), Research Assistant Professor (2010-present)
- Mr. Jesse J. Lutz, Graduate (Ph.D.) Student
- Ms. Janelle Bradley, Graduate (Ph.D.) Student
- Mr. Jared Hansen, Graduate (Ph.D.) Student
- Mr. Zhongqi Jin, Graduate (Ph.D.) Student

Former Postdoctoral Associates:

- Dr. Jeffrey R. Gour, Postdoctoral Assoc. (2010), currently Postdoctoral Assoc. at Stanford University
- Dr. Marta Włoch, Postdoctoral Assoc. (2004-2006), Research Assistant Prof. (2006-2007), currently, Assistant Prof. at Michigan Techological University
- Dr. Armagan Kinal, Postdoctoral Assoc. (2004-2006), currently, Assistant Professor at Ege University
- Dr. Karol Kowalski, Postdoctoral Research Associate (1999-2004), Research Assistant Professor (2004), currently, Senior Scientist at Pacific Northwest National Laboratory
- Dr. Rudolf Burcl, Postdoctoral Research Associate (1999-2000), currently, Assistant Professor at Marshall University
- Dr. Jesse Edwards, Postdoctoral Research Associate (1999-2000), currently, Associate Professor at Florida Agricultural and Mechanical University

Former Ph.D. Students:

- Dr. Jeffrey R. Gour, Graduate (Ph.D.) Student (2005-2010, NSF Graduate Fellow, currently Postoctoral Assoc. at Stanford
- Dr. Maricris Lodriguito, Graduate (Ph.D.) Student (2002-2007), currently, Postdoctoral Associate at Northwestern Univ.
- Dr. Peng-Dong Fan, Graduate (Ph.D.) Student (2001-2005), currently, Postdoctoral Associate at Pacific Northwest National Laboratory
- Dr. Ruth C. Jacobsen, Graduate (Ph.D.) Student (co-advised, 1999-2005), currently, at Center for Naval Analyses
- Dr. Michael J. McGuire, Graduate (Ph.D.) Student (2000-2006), currently, private sector
- Dr. Ian S.O. Pimienta, Graduate (Ph.D.) Student (1999-2003), currently, Assistant Prof. at Troy Univ.

Former Short-Term Visitors:

Professor Vladimir Špirko, Visiting Associate Prof. (1998, 1999), Professor Stanisław A. Kucharski, Visiting Professor (2004), Mr. Tomasz Kuś, Visiting Scholar (2004), Dr. Jiri Pittner, Visiting Scholar (2004), Professor Masahiro Ehara, Visiting Prof. (2007), Professor Jozef Noga, Visiting Prof. (2010)

Other Collaborators (Chemistry and Chemical Physics):

Professor Wesley D. Allen, Professor ChristopherJ. Cramer, Professor Imre G. Csizmadia, Professor Roger L. DeKock, Professor Masahiro Ehara, Professor Karl F. Freed, Professor Laura Gagliardi, Professor Mark S. Gordon, Professor So Hirata, Professor Katharine C. Hunt, Dr. Joseph Landman, Professor Horia Metiu, Dr. Felicja Mrugała, Professor Debashis Mukherjee, Professor Hiroshi Nakatsuji, Professor Marcel Nooijen, Professor John C. Polanyi, Dr. Cristina Puzzarini, Professor Henry F. Schaefer III, Dr. Michael W. Schmidt, Professor C. David Sherrill, Professor Donald G. Truhlar, Professor Antonio J.C. Varandas, Professor Theresa L. Windus, Professor Tomasz Wesolowski

Other Collaborators (Nuclear Physics):

Dr. David J. Dean, Professor Morten Hjorth-Jensen, Professor Thomas Papenbrock, Professor B. Alex Brown, Dr. Mihai Horoi, Professor Robert Roth
THANK YOU !