ISOSPIN MIXING AND ISOSPIN-SYMMETRY-BREAKING CORRECTIONS TO THE SUPERALLOWED BETA DECAY Wojciech Satuła

in collaboration with J. Dobaczewski, W. Nazarewicz & M. Rafalski

- Intro: effective low-energy theory for medium mass and heavy nuclei → mean-field (or nuclear DFT) → beyond mean-field (projection)
- Symmetry (isospin) violation and restoration:
 - \rightarrow unphysical symmetry violation \rightarrow isospin projection
 - → Coulomb rediagonalization (explicit symmetry violation)
 - isospin impurities in ground-states of e-e nuclei
 - structural effects \rightarrow SD bands in ⁵⁶Ni
 - superallowed beta decay
 - symmetry energy new opportunities of study

Summary

quark-gluon plasma OCD

nucleon

OCD

vstems medium-mass orce and heavy nuclei effective NN force tens of MeV →

Skyrme (nuclear) interaction conserves such symmetries like: \rightarrow rotational (spherical) symmetry \rightarrow isospin symmetry: $V_{nn}^{LS} = V_{pp}^{LS} = V_{np}^{LS}$ (in reality approximate)

 \rightarrow parity...

Mean-field solutions (Slater determinants) break (spontaneously) these symmetries

 $\hat{R}^{\dagger}(\mathbf{\Omega})\Phi_{SL} \neq \Phi_{SL} \quad \text{and} \quad \hat{R}^{\dagger}(\mathbf{\Omega})\hat{H}_{HF}[\mathbf{\rho}_{0}]\hat{R}(\mathbf{\Omega}) \neq \hat{H}_{HF}[\mathbf{\rho}_{0}]$

Isospin symmetry restoration

There are two sources of the isospin symmetry breaking: -> Engelbrecht & Lemmer,

- unphysical, caused solely by the HF approximation
- PRL24, (1970) 607 - physical, caused mostly by Coulomb interaction (also, but to much lesser extent, by the strong force isospin non-invariance)
- \bigcirc Find self-consistent HF solution (including Coulomb) \rightarrow deformed Slater determinant |HF>: $|\text{HF}\rangle = \sum b_{T,T_z} |\alpha; T, T_z\rangle$
- $T \geq |T_z|$ See: Caurier, Poves & Zucker, Apply the isospin projector: PL 96B, (1980) 11; 15 $\hat{P}_{T_z T_z}^T = \frac{2T+1}{2} \int_{-1}^{\pi}$ $d\beta \sin\beta d_{T_z T_z}^{T*}(\beta) \hat{R}(\beta)$ $|\alpha; T, T_z\rangle = \frac{1}{b_{T,T_z}} \hat{P}_{T_z T_z}^T |\text{HF}\rangle$ in order to create good isospin "basis": $= \frac{\langle \mathrm{HF} | \hat{P}_{T_z T_z}^{T\dagger} \hat{H} \hat{P}_{T_z T_z}^{T} | \mathrm{HF} \rangle}{\langle \mathrm{HF} | \hat{P}_{T_z T_z}^{T\dagger} \hat{P}_{T_z T_z}^{T} | \mathrm{HF} \rangle}$ Calculate the projected energy and the Coulomb mixing **Before Rediagonalization**: $\alpha_{\rm C}^{\rm Bh}$ $= 1 - |b_{T=|T_{\sigma}|}|^2$

Diagonalize total Hamilton "good isospin basis" $|\alpha, T, T\rangle$ \rightarrow takes physical isospin r

 $\hat{H} = \hat{H}^{S} + \hat{V}^{C}$ \downarrow $\hat{H}^{S} = \hat{T} + \hat{V}^{S}$

Isospin invariant

$$\begin{split} &\sum_{T' \ge |T_z|} \langle \alpha; T, T_z | \hat{H} | \alpha; T', T_z \rangle a_{T',T_z}^n = E_{n,T_z}^{AR} a_{T,T_z}^n \\ &\sum_{T' \ge |T_z|} \langle \alpha; T, T_z | \hat{H} | \alpha; T', T_z \rangle a_{T',T_z}^n = E_{n,T_z}^{AR} a_{T,T_z}^n \\ &\sum_{T' \ge |T_z|} \langle \alpha; T, T_z | \hat{H} | \alpha; T', T_z \rangle a_{T',T_z}^n = E_{n,T_z}^{AR} a_{T,T_z}^n \\ &\sum_{T' \ge |T_z|} \langle \alpha; T, T_z | \hat{H} | \alpha; T', T_z \rangle a_{T',T_z}^n | \alpha; T, T_z \rangle, \\ &\left| \alpha; n, T_z \rangle = \sum_{T \ge |T_z|} a_{T,T_z}^n | \alpha; T, T_z \rangle, \\ &\widehat{\mathbf{AR}}^n = \mathbf{1} - |\mathbf{a_{T=T_z}^{n=1}}|^2 \\ &\widehat{\mathbf{AR}}^n = \mathbf{1} - |\mathbf{a_{T=T_z}^{n=1}}|^2 \\ &\langle \mathrm{HF} | \hat{H}^S \hat{P}_{T_z T_z}^T | \mathrm{HF} \rangle = \int_0^\pi d\beta \sin \beta d_{T_z T_z}^T \langle \beta \rangle \langle \mathrm{HF} | \hat{H}^S \hat{R}(\beta) | \mathrm{HF} \rangle, \\ &\langle \mathrm{HF} | \hat{P}_{T_z T_z}^T \hat{V}_{\lambda 0}^G \hat{P}_{T_z T_z}^T | \mathrm{HF} \rangle = C_{T'T_z \lambda 0}^{TT_z} \sum_{\mu' = -\lambda}^{\lambda} C_{T'T_z' \lambda \mu'}^{TT_z} \\ &\frac{2T' + 1}{2} \int_0^\pi d\beta \sin \beta d_{T_z' T_z}^T \langle \beta \rangle \langle \mathrm{HF} | \hat{V}_{\lambda \mu'}^G \hat{R}(\beta) | \mathrm{HF} \rangle, \end{split}$$

 $|\widetilde{\mathrm{HF}}(\beta)\rangle = \hat{R}(\beta)|\mathrm{HF}\rangle$

Isospin symmetry violation in superdeformed bands in ⁵⁶Ni

D. Rudolph et al. PRL82, 3763 (1999)

Primary motivation of the project \rightarrow isospin corrections for superallowed beta decay $T_z=-/+1$ J=0+,T=1

 $\tau_{+/-}$

BR

d_{5/2} 8 P1/2 -P_{3/2} 2 2 S1/2 0 n n p p 140 $\longrightarrow 14$ N Hartree-Fock

t_{1/2}

QB

(N-Z=-/+2)

Experiment: Fermi beta decay:

$$ft = \frac{K}{G_v^2 < \tau >^2}$$

 $f \rightarrow$ statistical rate function $f(Z,Q_{\beta})$ $t \rightarrow$ partial half-life $f(t_{1/2},BR)$ $G_{v} \rightarrow$ vector (Fermi) coupling constant $<\tau_{+/-}> \rightarrow$ Fermi (vector) matrix element

J=0+,T=1 T₇=0 (N-Z=0)

 $| < \tau_{+/-} > |^2 = 2(1 - \delta_c)$

Experiment > world data survey'08

What can we learn out of it? From a single transiton we can determine experimentally: $G_V^2(1+\Delta_R) \rightarrow G_V = \text{const.}$ ✓ verified to ± 0.013% From many transitions we can: $\rightarrow test of the CVC hypothesis \leftrightarrow 7t values constant$ (Conserved Vector Current)6000 Evaluated 5000data 7t-value (s) x 100 3090 7t = 3072.2(8)4000 $G_v (1 + \Delta_R)^{1/2} / (hc)^3$ 3000 - 00 00 000000 3080 = 1.14961(15)x10⁵ GeV² 2000 3070 $\chi^2/\nu = 0.3$ 1000 306 5 10 15 20 25 30 35 10 20 30 40 50 **Z OF DAUGHTER** 3090 \rightarrow exotic decays $L = \pm 0.002$ 3080 7t (s) Test for presence of a Scalar Current 3070 3060 30 35 5 10 15 20 25 Z of daughter

one can determine

 $V_{ud} = G_V/G_{\mu}$

 $|V_{ud}| = 0.97425 \pm 0.00023$

→ test unitarity of the CKM matrix $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9996(7)$ 0.9491(4) 0.0504(6) <0.0001

test of three generation quark Standard Model of electroweak interactions

Model dependence

Hartree-Fock

ground state in N-Z=+/-2 (e-e) nucleus CPU ~ few h

Project on good isospin (T=1) and angular momentum (I=0) (and perform Coulomb rediagonalization)

~ few years

antialigned state in N=Z (o-o) nucleus Project on good isospin (T=1) and angular momentum (I=0)

(and perform Coulomb rediagonalization)

 $< T_{\approx 1}, T_{z} = +/-1, I = 0 | T_{+/-} | I = 0, T_{\approx 1}, T_{z} = 0 >$

H&T $\rightarrow \delta_c = 0.330\%$ 140 \longrightarrow 14N L&G&M $\rightarrow \delta_c = 0.181\%$ our: $\rightarrow \delta_c = 0.303\%$ (Skyrme-V; N=12)

Ft=3071.4(8)+0.85(85) V_{ud} =0.97418(26) our (no A=38): Ft=3069.6(10) V_{ud} =0.97459(24) $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 =$ =1.00070(98)

Summary and outlook

- Elementary excitations in binary systems may differ from simple particle-hole (quasi-particle) excitations especially when interaction among particles posseses additional symmetry (like the isospin symmetry in nuclei)
- Projection techniques seem to be necessary to account for those excitations - how to construct non-singular EDFs? [Isopin projection, unlike the angular-momentum and particle-number projections, is practically non-singular !!!]
- Superallowed beta decay:
 - → encomapsses extremely rich physics: CVC, V_{ud} , unitarity of the CKM matrix, scalar currents... connecting nuclear and particle physics → ... there is still something to do in δ_c business ...

How to include pairing into the scheme?

overlap matrix