Poszukiwanie baryonium a fizyka FAIR

S.Wycech, IPJ, Warsaw

SMI -12-11-09

30 lat poszukiwań

- baryonium = 2q + 2q
- $\overline{N} N$ quasi-bound states

Model potencjalny Brian - Philips

N N → N \overline{N} G –parzystość V_π → - V_π

Silne przyciaganie w stanach niedostepnych NN,

Stany quasi-związane,

anihilacja na odległosciach

 $1/2M \sim 01.fm$

?

Stare próby "short lived discoveries"

Kinks in p-pbar cross section (s, t, u)

 (\overline{p}, p) on nuclei

 $(\overline{p}, p)_{\text{ATOM}} \rightarrow (\overline{p}, p)_{\text{QBS}} + \gamma$

Nowsze próby

- A.Abele, Crystal Barrel..Eur Phys Journ.C 17(2000) 583
- $\overline{p} d$ annihilation into mesons
- nB(1855) → 3pi0+n
- Gamma < 10 MeV could not be seen on 5*10^(-4)
- level from n momentum distribution
- B.Bertini N.Phys B209 (1982) 269
- p p -> pi- , X
- no signal , X not excluded. ,
- I.Adiels .. Phys. Lett 182
- ppbar \rightarrow gamma +X ,
- no X Below 1770 MeV , Gamma < 25 Mev

p-pbar $\rightarrow \gamma + X$

Adiels /LEAR (1990) no baryonium E < 1770, $\Gamma < 25$ MeV

Fig. 2. γ -spectrum after subtracting a smooth background as described in the text. The two structures are due to the reactions $\pi^- + p \rightarrow \pi^+ + n$ and $\pi^- + p \rightarrow \gamma + n$.

trudnosci

Wiele fal parcjalnych – nie ma zakazu Pauli

Silne tło anihilacyjne

MODERN-selective-SIGNAL

$J/\psi \rightarrow (pp), \gamma$ BES collaboration, Pekin, 2005

CP: selects 3 possible partial waves

Enhancement in ¹¹S wave BES experiment reproduced by Paris and Juelich models

What happens below N – Nbar threshold

An additional evidence needed

Antiprotonic atoms Final state interactions in decay channels

Named X(1835)

- Model calculations
- Paris potential for N- \overline{N}
- c $\overline{c} \rightarrow 3$ gluons $\rightarrow N-\overline{N}$ J/ Ψ spin and isospin " inherited"

 \rightarrow N - \overline{N} γ final state interactions

Potential in ¹¹S

An effect of energy dependent potential

Nature of X(1835)

11S amplitude below threshold

Direct decay

• F_{if} used before –free range parameter,

.

• **F**_f - fr

Interference with intermediate interactive term

Inverse process - PANDA

$p p \rightarrow J/\psi + meson$

J/ψ p p_{bar}

Reasonable description : π , γ , ω , Φ

ATOMIC EVIDENCE

Atomic level shifts ≈ low energy scattering parameters

S waves

$\Delta E - i \Gamma/2 = |\Psi_{A}(0)|^{2} A_{B} 2\pi / M (1 + O(A/B))$

AO- hadron-nucleus scattering length

B - atomic radius

 ΨA - atomic wave function

Higher L atomic states $\Delta E_{L} - i \Gamma_{L}/2 = \theta A_{L}$

Low energy expansion for scattering amplitudes

p N subthreshold energies involved in p-bar atoms

Antiprotonic atom data widths and lower level shifts

Hydrogen 1s, 2p CERN -PS- 207

fine structure

Deuteron 1s, 2p CERN -PS- 207

³He , ⁴He 2p, 3d

M.Schneider

 Partial waves not resolved by antoprotonic levels

New BES experiment, 2007

Absorptive parts of S-wave p n ampltiude obtained from light atoms

S wave $(\overline{p}p)$ state

Two experiments select ¹¹S partial waves :

$$J/\psi \rightarrow (\overline{p}p), \gamma$$
 Bes

J/ψ → (ππη'), γ BES X(1835)

Non-selective

p - atomic level widths without fine structure PS 209, PS 207

¹¹S summary evidence

- The X(1835) peak can be generated by conventional NN potential model [7].
- Structure stems from broad and weakly bound state in the ¹¹S₀ wave: meson exchange + G-parity.
- Same state: peaks in $J/\Psi \rightarrow \gamma p p'$ and $J/\Psi \rightarrow \gamma \pi^+ \pi^- \eta'$.
- Additional confirmation in level widths of anti-protonic atoms.

P wave exotics

Guidelines : Paris N-Nbar potential model 2009

TABLE III: Binding energy in MeV of the close to threshold quasi-bound states of the present model and of the Paris 99 potential [8].

$2T+1 \ 2S+1L_J$	Present work	Paris 99
¹¹ S ₀	-4.8-i26	
³³ P ₁	-4.5-i9.0	-17-i6.5

But no bound state in ¹¹S Juelich potential

• Paris potential : M. Lacombe, B. Loiseau, S.W.

Imaginary part of P-wave p-bar amplitude from light atoms

Nuclear regions studied in atoms

Radiochemical measurements of residual nuclei after p-bar absorption Warsaw-Munich

Ratio $\sigma(\overline{p} n) / \sigma(\overline{p} p)$ in nuclei

		\downarrow	\downarrow	\downarrow	
	Lov	wer level ,	Upper level,	cold capture	
•	96 Zr	1.61(6)	1.91(6)	2.6(3)	
•	116 Cd	2.60(35)	3.33(37)	5.6(5)	
•	124 Sn	3.09(7)	3.43(25)	5.4(7)	

- Anomalies (4 cases)
- 106 Cd 1.65(80) 5.13(80) 0.5(1)
- weakly bound proton, strongly bound neutron

P wave quasi-bound state indications

Evidence

- p atomic level widths in
 H, ²H, ³He, ⁴He
 PS 207
- Radiochemical studies of N-1, Z-1 nuclei in nuclear p capture
 PS 203, 208

Conclusions

 Consistent evidence of ¹¹S broad quasi-bound state

(the structure is less certain)

• Indications of ³³P quasi bound state

To be continued at FAIR (or CERN)

New clarifying experiments

Fine structure resolution in deuterium, helium atoms

PAX – polarized beam proposal
$$\overline{p}p \rightarrow (\overline{p}p), \gamma$$

FIG. 2: Resulting real U(r) and imaginary W(r) potentials compare with those of Paris 99 [8]. The NN optical potential is defined as U(r) - iW(r) [7].

Resonances $^{13} P_{\circ}$

Paris model resonances

TABLE IV: Close to threshold resonances of the present model. The numbers in parenthesis correspond to the $^{11}P_1$ resonance of Paris 99. The $^{13}P_0$ and $^{13}P_1$ resonances have identical positions in the Paris 99 model. There is no $^{33}P_0$ resonance in the Paris 99 potential.

$2T+1 \ 2S+1L_J$	¹¹ P ₁	$^{13}P_{0}$	$^{13}P_{1}$	$^{33}P_{0}$
Mass (MeV)	1877 (1872)	1876	1872	1871
Width (MeV)	26 (12)	10	20	21

- "atomic" ¹³ P_{\circ} disagrees with all models
- may give nuclear states of antiproton

Scattering data ~4000 data + hydrogen p-bar atom

FIG. 1: Total and annihilation cross sections for the pp and πp systems. The references of the experimental data can be found in Ref. [7]. The data of Iazzi *et al.* in Fig. 1(c) are from Ref. [9].

 2