



Institute for Nuclear Research and Nuclear Energy, BAS, Bulgaria

Institute of Theoretical Physics, University of Warsaw, Poland

# <u>Topic I</u>

### I. Description of the used mean-field model

- i. Skyrme-Hartree-Fock approximation
- ii. Some additional information for the model calculations
- *iii. Experimental clues for evolution of the shell structure close to the drip lines*
- iv. Applications of the model:
  - i. For the isotopic chain Z=14
  - *ii.* For the isotonic chain N=28
  - *iii. For the isotopic chain Z=50*
  - *iv.* For the isotonic chain N=82

# <u>Topic II</u>

## *II.* Description of the excitations in tin nuclei

- i. Giant dipole resonance
- ii. Pygmy dipole resonance

iii. QRPA description of the microscopic model

#### iv. Results:

- i. Neutron skin
- *ii. Giant dipole resonance*
- *iii. Pygmy dipole resonance*
- iv. Transitional densities
- v. Description of the first 2<sup>+</sup> states in Sn chain

# Topic III

III. Mixed Symmetry States in some N=80

i. What is a mixed symmetry state

i. Quasiparticle-phonon model

*iii. What makes* <sup>138</sup>**Ce different from** <sup>136</sup>**Ba and** <sup>134</sup>**Xe.** 

**IV.Outlook** 



Assumptions of the SHF model

ELEMENTS

$$H = \sum_{k=1}^{A} h(k) \qquad \qquad i = \{\overrightarrow{r_i}, \sigma_i\}, \quad k = [q, n, l, j]$$

$$\varphi_k(i) = \frac{u_k(r)}{r} \mathscr{Y}_{lj}^m(\overrightarrow{r_i},\sigma) \chi_q(\tau)$$



Skyrme force potential

$$V(r_1, r_2) = t_0 (1 + x_0, \mathbf{P}_{\sigma}) \,\delta(r)$$

$$+ \frac{1}{2} t_1 (1 + x_1 \mathbf{P}_{\sigma}) \left[\mathbf{P}^{\prime 2} \delta(r) + \delta(r) \mathbf{P}^2\right]$$

$$+ t_2 (1 + x_2 \mathbf{P}_{\sigma}) \mathbf{P}^{\prime} \cdot \delta(r) \mathbf{P}$$

$$+ \frac{1}{6} t_3 (1 + x_3 \mathbf{P}_{\sigma}) \left[\frac{\rho(r)}{\rho_0}\right]^{\sigma}$$

$$+ i W_0 \sigma \cdot \left[\mathbf{P}^{\prime} \times \delta(r) \mathbf{P}\right]$$

Central term Non-local term Density dependent term Spin-orbit term



#### Skyrme-Hartree-Fock model

**Stiplet televol eltes**i syty

$$\langle \varphi | H | \varphi \rangle ~\equiv~ \int \mathcal{H} \left( \overrightarrow{r} \right) d^3 r$$

 $\mathcal{H} = \mathcal{K} + \mathcal{H}_0 + \mathcal{H}_3 + \mathcal{H}_{eff} + \mathcal{H}_{fin} + \mathcal{H}_{so} + \mathcal{H}_{sg} + \mathcal{H}_{Coul}$ 

$$\begin{split} \rho_q(r) &= \sum_{l,s} |\varphi_i(r)|^2 n_i^q \qquad \tau_q(r) = \sum_{l,s} |\varphi_i(r)|^2 n_i^q \\ J_q(r) &= \frac{1}{4\pi r^3} \sum_{nlj} \left[ j_i(j_i+1) - l_i(l_i+1) - \frac{3}{4} \right] n_i^q u_i^2(r) \end{split}$$



#### Pairing correlations (BCS)

## Two nucleons coupled to a total angular momentum of 0

$$V^{(\text{n or p})} = V_0^{(\text{n or p})} \left(1 - \frac{\rho(\mathbf{R})}{\rho_0}\right) \delta(\mathbf{r}_1 - \mathbf{r}_2)$$
$$\langle aa|V|cc \rangle_{00} = (-1)^{l_a + l_c} \frac{1}{2} \frac{\hat{j}_a \hat{j}_c}{4\pi} I_{aacc}$$

$$I_{aacc} = V_0 \int_0^\infty \frac{dr}{r^2} \left(1 - \frac{\rho}{\rho_0}\right) u_a(r) u_a(r) u_c(r) u_c(r)$$



ELEMENTS

#### Pairing correlations II (BCS)

The Gap equation

$$\Delta_{a} = -\frac{1}{2} \sum_{c} (-1)^{l_{a}+l_{b}} \hat{j}_{a}^{-1} \hat{j}_{b} \left\langle aa \mid V \mid cc \right\rangle \frac{\Delta_{c}}{\sqrt{\left(\varepsilon_{c}-\lambda\right)^{2}+\Delta_{c}^{2}}}$$

$$v_k^2 = \frac{1}{2} \left( 1 - \frac{\tilde{\epsilon}_k}{\sqrt{\tilde{\epsilon}_k^2 + \Delta_k^2}} \right)$$
$$u_k^2 = \frac{1}{2} \left( 1 + \frac{\tilde{\epsilon}_k}{\sqrt{\tilde{\epsilon}_k^2 + \Delta_k^2}} \right)$$



#### Pairing correlations II (BCS)

 $S_{2n}^{exp} - S_{2n}^{\overline{B}CS}$ 

$$S_{2n}^{A,Z} = B(A,Z) - B(A-2,Z)$$
  
$$S_{2p}^{A,Z} = B(A,Z) - B(A-2,Z-2)$$





Taking into account the two-body tensor interaction

$$V_{T}(r) = v_{T}(r)\tau \cdot \tau' \left[ \frac{1}{r^{2}}(r \cdot \sigma)(r \cdot \sigma') - \frac{1}{3}\sigma \cdot \sigma' \right]$$
$$v_{T} = \frac{1}{2}T \left\{ [(\sigma_{1} \cdot k')(\sigma_{2} \cdot k') - \frac{1}{3}(\sigma_{1} \cdot \sigma_{2})k'^{2}|\delta(r_{1} - r_{2}) + \delta(r_{1} - r_{2})[(\sigma_{1} \cdot k)(\sigma_{2} \cdot k) - \frac{1}{3}(\sigma_{1} \cdot \sigma_{2})k^{2}] \right\}$$
$$+ U \left\{ (\sigma_{1} \cdot k')\delta(r_{1} - r_{2})(\sigma_{1} \cdot k) - \frac{1}{3}(\sigma_{1} \cdot \sigma_{2})k^{2} \right\}, \qquad (1)$$

Stancu, Brink and Flocard, Phys. Lett. 68B, 108 (1977)

For S waves the contribution of the tensor term is 0



Taking into account the tensor term into the Skrme-Hartree-Fock model

 $\mathcal{H} = \mathcal{K} + \mathcal{H}_0 + \mathcal{H}_3 + \mathcal{H}_{eff} + \mathcal{H}_{fin} + \mathcal{H}_{so} + \mathcal{H}_{sg} + \mathcal{H}_{Coul}$  $\mathcal{H} = \mathcal{K} + \mathcal{H}_0 + \mathcal{H}_3 + \mathcal{H}_{eff} + \mathcal{H}_{fin} + \mathcal{H}_{so} + \mathcal{H}_{sg} + \mathcal{H}_T + \mathcal{H}_{Coul}$  $H_{sg} = -\frac{1}{16} \left( t_1 \left( x_1 - 1 \right) + t_2 \left( x_2 + 1 \right) \right) \left[ J_p^2 + J_n^2 \right] - \frac{1}{8} \left( t_1 x_1 + t_2 x_2 \right) J_n J_p$  $=\frac{1}{2}\alpha_{c}\left[J_{p}^{2}+J_{n}^{2}\right]+\beta_{c}J_{n}J_{p}$  $\mathcal{H}_T = \frac{1}{2}\alpha_T \left(J_n^2 + J_p^2\right) + \beta_T J_n J_p$ 



ELEMENTS

Hartree-Fock equations

$$\begin{split} &\langle \varphi | H | \varphi \rangle \qquad \dots \\ &\frac{\hbar^2}{2m} \left[ -\frac{d^2}{dr^2} \psi(r) + \frac{l(l+1)}{r^2} \psi(r) \right] + V_{eq}^{lj}(r,\epsilon) \psi(r) = \epsilon \psi(r) \\ & \text{ where, } \psi(\mathbf{r}) = \sqrt{\frac{m^*(r)}{m} \frac{\mathbf{u}(\mathbf{r})}{\mathbf{r}}} \end{split}$$

$$V_{\rm eq}^{lj}(r,\epsilon) = \frac{m^*(r)}{m} U_0(r) + \frac{m^*(r)}{m} U_{\rm so}^{lj}(r) + V_{\rm eq}^{\rm m*} \,, \label{eq:Veq}$$



#### Taking into account the tensor term into the Hartree-Fock model II

 $\epsilon = \epsilon_{\rm kin} + \epsilon_{\rm cen.} + \epsilon_{\rm s.o.} + \epsilon_{m*}$ 

 $\epsilon_{\text{s.o.}} = \epsilon_{\text{s.o.}} + \epsilon_C + \epsilon_T$ 





T. Otsuka, R Bujzonkitor, F. ujitsono, B. Grabwewand/YHAkaishiand T. Mizusaki, Physical Review Letters 93 (2005), 082502.



# Experimental clues for the shell structure evolution close to the drip lines



- Shrinking of 1 MeV of the N=28 gap for <sup>42</sup>Si (starting value of about 4.8 MeV for <sup>48</sup>Ca).
- Shrinking of the proton sd orbital of 1.94 MeV for <sup>42</sup>Si in comparison to <sup>34</sup>Si

#### LB GBastiefranychetdatt, alhy Bhyadi Balv Rewie extlette 99 (220(22))062,2592501

FIG. 3: Energies of the  $2^+$  states measured in the Ca and Si isotopes. Present result for  ${}^{42}\text{Si} - 770(19)$  keV– brings evidence for the the collapse of the N=28 shell closure at Z=14.





ELEMENTS

 $1f_{7/2} - 2p_{3/2}$ Bastin et al. expected reduction of the gap in Si: 1.2MeV Gaudefroy et al. – observed reduction of the gap in Ar 330keV

| (N,Z)  | (28,14) | (28,16) | (28,18) | (28,20) |
|--------|---------|---------|---------|---------|
| SLy5   | 2.55    | 3.09    | 3.49    | 3.75    |
| SLy5+T | 3.79    | 4.08    | 4.66    | 5.15    |



Ζ



# *Results:* Z=50, N=82



J.P. Schiffer, et al., Phys. Rev. Lett. 92 (2004) 162501



## **Giant Dipole Resonance**

 $\checkmark$  High frequency, collective excitation of the nuclei

- ✓Their basic features depend on the bulk structure
- ✓ Their characteristics change slowly with the mass number
- ✓ Their energy is situated well above the one particle separation energy (10-20 MeV)

✓ Their width is about 2.5 - 6 MeV

✓ The effective cross section may be described well by the following Lorentz type distribution formula.

$$E \qquad \sigma_{\gamma}(E) = \frac{\sigma_{Max}}{1 + \left[\frac{(E^2 - E_{GDR}^2)^2}{E^2\Gamma^2}\right]} A^{-1/6}$$



## **Pygmy Dipole Resonance**

It is an effect from structural changes when one goes further towards the drip lines
 Appearance of a diffused surface – the skin
 The energy of the Pygmy Dipole Resonance is a function of the collectivity and the energy of the Giant Dipole Resonance

$$E_{PDR} = \sqrt{\frac{Z}{A - Z} \frac{N_s}{A - N_s}} E_{GDR}$$



Landau-Migdal representation of the residual force

$$V_{ph} = N_0^{-1} \sum_l \left[ F_l + G_l \sigma_1 \cdot \sigma_2 + (F_l + G_l \sigma_1 \cdot \sigma_2) \tau_1 \cdot \tau_2 \right] \delta(\mathbf{r_1} - \mathbf{r_2}),$$

Linking to the Skyrme parameters

$$\begin{split} F_0 &= N_0 \left[ \frac{3}{4} t_0 + \frac{1}{16} t_3 \rho^{\alpha} (\alpha + 1) (\alpha + 2) + \frac{1}{8} k_F^2 \left[ 3t_1 + (5 + 4x_2) t_2 \right] \right] \\ F'_0 &= N_0 \left[ \frac{1}{4} t_0 (1 + 2x_0) + \frac{1}{24} t_3 \rho^{\alpha} (1 + 2x_3) + \frac{1}{8} k_F^2 \left[ t_1 (1 + 2x_1) - t_2 (1 + 2x_2) \right] \right] \\ G_0 &= -N_0 \left[ \frac{1}{4} t_0 (1 - 2x_0) + \frac{1}{24} t_3 \rho^{\alpha} (1 - 2x_3) + \frac{1}{8} k_F^2 \left[ t_1 (1 - 2x_1) - t_2 (1 + 2x_2) \right] \right] \\ G'_0 &= -N_0 \left[ \frac{1}{4} t_0 + \frac{1}{24} t_3 \rho^{\alpha} + \frac{1}{8} k_F^2 (t_1 - t_2) \right] \end{split}$$



## QRPA Hamiltonian

 $H = \sum_{\tau} \sum_{jm}^{\tau} (E_f - \lambda_{\tau}) a_{jm}^{+} a_{jm}$ -  $\frac{1}{4} \sum_{\tau} V_{\tau}^{(0)} P_{0}^{+}(\tau) P_{0}(\tau)$ -  $\frac{1}{2} \sum_{\tau} \sum_{k=1}^{N} \sum_{q=\pm 1} \sum_{\lambda \mu} \kappa_{0}^{M,k} + q \kappa_{1}^{(M,k)} : M_{\lambda \mu}^{(k)+}(\tau) M_{\lambda \mu}^{(k)}(\mathbf{q}\tau) :$ 

$$- \frac{1}{2} \sum_{\tau} \sum_{k=1}^{N} \sum_{q=\pm 1} \sum_{\lambda \mu} \sum_{L=\lambda,\lambda \pm 1} \kappa_{0}^{S,k} + q \kappa_{1}^{(S,k)} : S_{\lambda L \mu}^{(k)+}(\tau) S_{\lambda L \mu}^{(k)}(\mathbf{q}\tau) :$$

Hartree-Fock term

**Pairing term** 

**Isoscalar term** 

**Isovector term** 

$$\begin{pmatrix} k_0^{M,k} \\ k_1^{M,k} \\ k_0^{S,k} \\ k_1^{S,k} \\ k_1^{S,k} \end{pmatrix} = -N_0^{-1} \frac{R\omega_k}{2r_k^2} \begin{pmatrix} F_0(r_k) \\ F'_0(r_k) \\ G_0(r_k) \\ G'_0(r_k) \end{pmatrix}$$



#### Results for the isotopic chain Z=50: RootMeanSquare radii





#### Results for the isotopic chain Z=50: Energy of the Giant Dipole Resonance





Results for the isotopic chain Z=50: Evolution of the dipole excitations with the mass number



$$\delta \rho_{if}^{T} = \sum_{j_{1}j_{2};\lambda\mu}^{Results} for the isotopic chain Z=50:$$

$$V_{j_{1}j_{2};\lambda\mu}^{T} = \sum_{j_{1}j_{2};\lambda\mu}^{Results} I_{j_{1}j_{2};\lambda\mu}^{T} (f) P_{j_{1}j_{2};\lambda\mu}^{T} (f) P_{j_{1}j_{2};\lambda\mu}^{T$$

$$\rho_{j_1 j_2}^{\lambda T}(r) = u_{j_1}(r) u_{j_2}(r) \frac{1}{\hat{\lambda}} \langle j_1 || i^{\lambda} Y_{\lambda} || j_2 \rangle \langle q | \tau_3^T | q \rangle \qquad \qquad |\Psi(i)\rangle = |0\rangle \\ |\Psi(f)\rangle = Q_{\lambda \mu i}^+ |0\rangle$$

$$\begin{split} \mathbf{I} & \delta \rho_{if}^{T} = \sum_{j_{1}j_{2};\lambda} \left[ \frac{i^{\lambda} \nabla \cdot (r)}{\delta \sigma^{T}} \frac{1}{\sigma^{\lambda T}} \frac{\sigma^{\lambda T}(r)}{\sigma^{\lambda i}} \frac{(r)}{\sigma^{\lambda i}} \frac{\sigma^{\lambda i}}{\sigma^{\lambda i}} \right] \\ &= \sum_{j_{1}j_{2};\lambda} \left[ \rho_{j_{1}j_{2}}^{1p}(r) = \frac{1}{2} \rho_{j_{1}j_{2}}^{10}(r) - \rho_{j_{1}j_{2}}^{11}(r) \frac{1}{j_{1}j_{2}} \right] \\ &\rho_{j_{1}j_{2}}^{1n}(r) = \frac{1}{2} \rho_{j_{1}j_{2}}^{10}(r) + \rho_{j_{1}j_{2}}^{11}(r) \end{split}$$



#### Results for the isotopic chain Z=50: Transitional densities

$$\begin{split} \rho_{j_1 j_2}^{1p}(r) &= \frac{1}{2} \rho_{j_1 j_2}^{10}(r) - \rho_{j_1 j_2}^{11}(r) \\ \rho_{j_1 j_2}^{1n}(r) &= \frac{1}{2} \rho_{j_1 j_2}^{10}(r) + \rho_{j_1 j_2}^{11}(r) \end{split}$$



### Results for the isotopic chain Z=50: Transition densities

- Transitional densities for excitations below 10 MeV;
- Transitional densities for excitations belonging to the Giant Dipole Resonance;
- 3. Excitations of a mixed type.





[1] A. Banu et al., Phys. Rev. C 72, 061305(R) (2005).
[2] J. Cederkall, A. Ekstrom, C. Fahlander, A. M. Hurst, M. 325c (2005)
Hjorth-Jensen, F. Ames, A. Banu, P. A. Butler, T.
Davinson, Data Pranatik, of Phys. Rev. Lett. 96
[3] C. Vaman, C. Andreoiu, D. Bazin, A. Becerril, B. A.
Brown, C. M. Campbell, A. Chester 199, 162501 (2007).
[4] A. Ekstrom, J. Cederkall, C. Fahlander, M. Hjorth-Jensen, F. Ames, P. A. Butler, T. Davinson, J. Eberth, F.
[4] A. Ekstrom, J. Cederkall, C. Fahlander, M. Hjorth-Jensen, F. Ames, P. A. Butler, T. Davinson, J. Eberth, F.

#### **Motivation:**

In recent experiments [1-4] the E2 strengths have been measured in the neutron deficient <sup>106-112</sup>Sn isotopes. Using different models [5-8] a lot of theoretical effort was devoted in order to understand the effect of different aspects of the nuclear structure the on  $B(E2,g.s.\rightarrow 2_1^+)$  strength in the tin chain. We try to describe the effect of the pairing on the E2 strength in these nuclei, and compare to the experimental results.





# Mixed symmetry states (MSS)

Mixed symmetry states in the framework of a microscopic model:

2<sub>1</sub><sup>+</sup> oscillations of the proton and neutron systems in phase; (*isoscalar* vibrations)

(Fully Symmetric State)

2<sub>2</sub><sup>+</sup> oscillations **out-of-phase;** (*isovector*) vbrations of protons and neutrons

(Mixed Symmetry State)

- A. A.Faessler, R. Nojarov, Phys. Lett., **B166**, 367 (1986)
- B. R. Nojarov, A. Faessler, J. Phys. G, **13**, 337 (1987)



# Quasiparticle Phonon Model (QPM)

$$H_{QPM} = H_{sp} + V_{pair} + V_M^{ph} + H_{SM}^{ph} + H_M^{pp}$$

$$H_{pair} = -\sum_{j,j',m,m'} G(jm, j-m; j'm', j', -m') a_{jm}^{\dagger} a_{j-m}^{\dagger} a_{j'm'}^{\dagger} a_{j'm'}$$

$$V(r) = -\frac{V_0^{N,Z}}{1 + \exp\left[\frac{1}{a}(\mathbf{r}.p,\mathbb{R}_0)\right]} \sum_{j,m} c(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0^{T}(\mathbf{r}_0$$



# Quasiparticle Phonon Model (QPM)

1. V.G. Soloviev, *Theory of atomic nuclei : Quasiparticles and Phonons* (Institute of Physics Publishing, Bristol and Philadelphia, 1992).

$$H_{QPM} = \sum_{i\mu} \omega_{i\lambda} Q^{\dagger}_{i\lambda\mu} Q_{i\lambda\mu} + H_{vq}$$
$$Q^{\dagger}_{i\lambda\mu} = \frac{1}{2} \sum_{jj'} \left\{ \psi^{i\lambda}_{jj'} [\alpha^{\dagger}_{j}\alpha^{\dagger}_{j'}]_{\lambda\mu} - (-1)^{\lambda-\mu} \varphi^{i\lambda}_{jj'} [\alpha_{j'}\alpha_{j}]_{\lambda-\mu} \right\}_{\tau}$$

$$\begin{split} \Psi_{\nu}(\lambda\mu) &= \sum R_{i}(\nu J)Q_{i,\lambda u}^{+}|0\rangle + \sum P_{i,m_{2}}^{j_{1}m_{1}}(\nu\lambda)[Q_{i,m_{1}}^{+}\otimes Q_{i,m_{2}}^{+}]_{\lambda\mu}|0\rangle \\ &[Q_{\lambda\mu i},Q_{\lambda'\mu'i'}^{+}] = \frac{\delta_{\lambda\lambda'}\delta_{\mu\mu'}\delta_{ii'}}{2}\sum_{jj'}\left[X_{jj'}^{\lambda i}X_{jj'}^{\lambda i'} - Y_{jj'}^{\lambda i}Y_{jj'}^{\lambda i'}\right] - \sum_{jj'j_{2}mm'm_{2}}\alpha_{jm}^{+}\alpha_{j'm'} \\ &\left[X_{j'j_{2}}^{\lambda i}X_{jj_{2}}^{\lambda'i'}\langle j'm'j_{2}m_{2}|\lambda\mu\rangle\langle jmj_{2}m_{2}|\lambda'\mu'\rangle - (-1)^{\lambda+\lambda'+\mu+\mu'}Y_{jj_{2}}^{\lambda i}Y_{j'j_{2}}^{\lambda'i'}\langle jmj_{2}m_{2}|\lambda-\mu\rangle\langle j'm'j_{2}m_{2}|\lambda'-\mu'\rangle\right] \end{split}$$



## Results



Energies of the two-quasiparticle states for the first 2<sup>+</sup> excitation

First excitation – np collective, isoscalar Second excitation – np collective, isovector



## Results





The effect of the different Skyrme forces on the single particle scheme (<sup>138</sup>Ce)





This ratio probes: **1. The iso scalar** (B(2<sup>+</sup>)<1) n an  $2^+$   $\sum_{k} r_{2\mu}^2 Y_{2\mu}(\Omega k) - \sum_{k} r_$ 

$$\begin{array}{c} (2^{+}) = & \hline \\ \text{properties of the 2^{+} state under consideration} \\ & \left\| \sum_{k} r_{k}^{2} Y_{2\mu}(\Omega k) + \sum_{k} r_{k}^{2} Y_{2\mu}(\Omega k) \right\| g.s$$

B(2+<sub>1</sub>)=0.0012

**Results for** 

138**Ce** 

 $\gamma_k^2 Y_{2\mu}(\Omega k)$ 

 $\|g.s\|$ 

 $B(2_{2}^{+})=2.609$ 

 $B(2_{3}^{+})=1.235$ 





# QPM Results for <sup>136</sup>Be and<sup>138</sup>Ce

| Nucleus             | $J_i \rightarrow J_f$        | B(E2)    |            | B(M1)     |            |
|---------------------|------------------------------|----------|------------|-----------|------------|
|                     |                              | EXP      | QPM (SIII) | EXP       | QPM (SIII) |
| <sup>136</sup> Ba   | $0^+_{qs} \rightarrow 2^+_1$ | 0.400(5) | 0.24       |           |            |
|                     | $0_{qs}^+ \rightarrow 2_2^+$ | 0.016(4) | 0.09       |           |            |
|                     | $0_{gs}^+ \rightarrow 2_3^+$ | 0.045(5) | 0.03       |           |            |
|                     | $2^+_2 \rightarrow 2^+_1$    | 0.09(4)  | 0.12       |           |            |
|                     | $2^+_2 \rightarrow 2^+_1$    |          |            |           | 0.007      |
|                     | $2^+_3 \rightarrow 2^+_1$    |          |            | 0.26(3)   | 0.21       |
| $^{138}\mathrm{Ce}$ | $2^+_1 \rightarrow 0^+_{qs}$ | 21.2(14) | 11         |           |            |
|                     | $2^+_2 \rightarrow 0^+_{qs}$ | 1.16(8)  | 4.5        |           |            |
|                     | $2^+_3 \rightarrow 0^+_{qs}$ |          | 3.9        |           |            |
|                     | $2^+_4 \rightarrow 0^+_{qs}$ | 1.86(16) | 0.35       |           |            |
|                     | $2^+_2 \rightarrow 2^+_1$    | 28(2)    | 26         | 0.011(2)  | 0.003      |
|                     | $2^+_3 \rightarrow 2^+_1$    |          | 6.1        | 0.058(6)  | 0.23       |
|                     | $2^+_4 \rightarrow 2^+_1$    | 0.65(10) | 0.28       | 0.122(10) | 0.13       |

QPM versus experimental strengths of E2 and M1 transitions. The E2 strengths are given in W.u. for <sup>138</sup>Ce, and in e<sup>2</sup>b<sup>2</sup> for <sup>136</sup>Ba. The M1 strengths are in  $\mu_N^2$ .



- 1) Expanding our QPM calculations towards other N=80 isotones; looking into N=78 and N=84 isotones.
- 2) A self consistent description (starting from Skyrme type force) in the QPM model.
- 3) Including particle-vibration coupling.
- 4) Constructing a new QRPA code, and extending the one we have.

# Thank You for Your attention



analog\*



digital

\* an organ or structure that is similar in function to one in another kind of organism but is of dissimilar evolutionary origin