

Neutron-proton interaction in ${ }^{92} \mathrm{Pd}$

Marcin Palacz

Heavy Ion Laboratory, University of Warsaw

Agenda

- Introduction
- Experiment
- Results
- Interpretation
- Continuation

Nuclear pairing

Theory of the pairing mechanism in nuclei followed the Baardeen Cooper and Schriefer explanation of superconductivity in metals

Possible Analogy between the Excitation Spectra of Nuclei and Those of the Superconducting Metallic State

A. Bohr, B. R. Mottelson, and D. Pinfs*

Institute for Theoretical Physics, University of Copenhagen, Copenhagen, Denmark, and Nordisk Institut for Teoretisk Atomfysik Copenhagen, Denmark
(Received January 7, 1958)
The evidence for an energy gap in the intrinsic excitation spectrum of nuclei is reviewed. A possible analogy between this effect and the energy gap observed in the electronic excitation of a superconducting metal is suggested

Possible pairing schemes

- In most ($\mathrm{N}>\mathrm{Z}$) nuclei pp and nn pairing dominates
- Charge indepedence => pp, nn, np coupling possible
- Pauli principle: for pp, nn must couple with opposite spins
- np can also form T=0, J>0 pairs

- For $N>Z, n p$ coupling difficult to observe due the different spatial wave functions of valence nucleons,

Examples of the np pairing evidence

- Ground states of odd-odd $\mathrm{N}=\mathrm{Z}$ nuclei:
$\mathrm{A} \leq 40$ (except ${ }^{34} \mathrm{Cl}$): $\mathrm{T}=0, \mathrm{~J}>0 \Rightarrow$ dominating isoscalar np pairing

$$
\text { A>40 (except }{ }^{58} \mathrm{Cu} \text {): } \mathrm{T}=1, \mathrm{~J}=0 \Rightarrow
$$ dominating isovector np paring

- Rotational properties of $\mathrm{N} \approx \mathrm{Z}$ nuclei:
$\mathrm{T}=1 / \mathrm{T}=0$ band crossing $\left({ }^{74} \mathrm{Rb}_{37}\right)$
D.Rudolph et al. PRL 76 (1996) 376,
D.J.Dean et al. Phys.Lett. B399 (1997) 1 T=1

- Evidence for strong isovector pairing in odd-odd $N=Z$ nuclei seen in the double binding energy differences Macciavelli et al. PRC 61 (2000) 041303(R)
- Are there signatures of np pairing in the ground and low lying states of even-even nuclei at $\mathrm{N}=\mathrm{Z}$?

Towards ${ }^{100}$ Sn along $N=Z$

The experiment at GANIL

- Beam: ${ }^{36} \mathrm{Ar}$
- Target: ${ }^{58} \mathrm{Ni}$
- ${ }^{92}$ Pd produced via fusion and and evaporation of 2 neutrons

The experiment - details

- EXOGAM + Neutron Wall + DIAMANT at GANIL
- Beam: ${ }^{36} \mathrm{Ar}, 111 \mathrm{MeV}, 10 \mathrm{pnA}$ isotopic purity, precise energy tuning very close to the Coulomb barrier, timing resolution 3.5 ns , optimum pulse distance, good collimation
- Target: ${ }^{58} \mathrm{Ni}, 6.0 \mathrm{mg} / \mathrm{cm}^{2}, 99.83 \%$ enriched purity of the target material and good vacuum are essential, thick enough to stop recoils, but not thicker
- 14 days of beam time in September 2009 $3.9 \cdot 10^{9} 1 \mathrm{n}$ trigger preselected events

The Device

EXOGAM

Up to 16 Compton suppressed segmented HPGe clover detectors

$$
E_{v} \sim 10 \%(1.3 \mathrm{MeV})
$$

(11 detectors in a closed packed configuration)

DIAMANT

- 80 Csl scintillators
- Efficiency protons: 55\%, alpha: 48\%, veto: 66 \%

B.Nyako et al .ATOMKI, J.-N.Sheurer et al. CENBG, Bordaux, University of Napoli

Neutron Wall

- Neutron detectors designed for selection of rare fusionevaporation channels in γ-ray spectroscopy studies of proton-rich nuclei
- Owned (since 2003) by the European Gamma Ray Spectroscopy Pool, financed by the research councils from Sweden, UK, Germany and Poland, managed by the Uppsala University, run by collaboration: Uppsala, Stockholm, Lund, York, Daresbury, GSI, Warsaw, Świerk, GANIL
- Built for EUROBALL, moved to GANIL in 2004, usually coupled to EXOGAM and DIAMANT, 9 experiments run in three campaings

Neutron Wall

- soild angle 1п, liquid scintillator BC501A - xylene, $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right)_{2}$
- 50 detectors
- parameters: tof, zco, E
- $\varepsilon_{\text {abs }}=0.15$ (1.25 MeV)
- $\varepsilon_{\text {fus-ev }} \sim 0.20-0.25$

Neutron Wall

$n-\boldsymbol{\gamma}$ discrimination

Done by:

- time-fo-flight
- $\mathrm{n}-\mathrm{\gamma}$ pulse shape difference (ZCO)

drawing from P-A Söderström, licentiate thesis 2009
> n-ү misinterpretation probability: 0.3 \%

2n discrimination

Time difference

Identification of ${ }^{92} \mathbf{P d} \gamma$-ray lines

- Gamma rays from ${ }^{92} \mathrm{Pd}$ identified by: comparison of 1 n and 2 n gated spectra (with various additional dr-dt conditions)
Relatively enhanced with the charged particle veto condition.
- The possibility was excluded that these gamma rays are produced in reactions on possible target contaminants.

Identification of ${ }^{92}$ Pd γ-ray lines

F. Ghazi Moradi-SKFM 2010

Identification of ${ }^{92}$ Pd

Shell Model calculations

By J.Blomqvist, C.Qui, R.Liotta

- $f_{5 / 2} p_{3 / 2} p_{1 / 2} g_{9 / 2}$ model space
- matrix elements from a least-squares fit to experimental binding energies and excitation energies for $A=63$ to 96 , starting from realistic interactions
A.F.Lisetskiy et al. Phys. Rev. C70 044314 (2004)

Structure of ${ }^{92} \mathrm{Pd}$ compared to ${ }^{96} \mathrm{Pd}$

Shell Model tests of different pairing modes

C $\quad 10^{+} \quad 4,072$

Marcin Palacz
Hoża, 24 March 2011

A comment on excited states in ${ }^{88} R u \quad(N=Z=44)$

- Significant contributions of $f_{5 / 2}$ and $p_{3 / 2}$ orbitals are necessary to reproduce energies of excited states of ${ }^{88} \mathrm{Ru}$ (rotational/vibrational collectivity)
- Such interpretation does not hold for ${ }^{92} \mathrm{Pd}$, due to the purity of its wave functions ($g_{9 / 2}$ only)

An experiment to study ${ }^{96} \mathrm{Cd}$ accepted by the GANIL PAC ${ }^{40} \mathrm{Ca}+{ }^{58} \mathrm{Ni} \rightarrow{ }^{98} \mathrm{Cd}(\mathrm{CN}) \rightarrow{ }^{96} \mathrm{Cd}^{*}+2 \mathrm{n}$

Conclusions

- ${ }^{92} \mathrm{Pd} \gamma$ rays were identified, excitation energies of $2^{+}, 4^{+}, 6^{+}$proposed
- ${ }^{92} \mathrm{Pd}$ becomes the heaviest $\mathrm{N}=\mathrm{Z}$ nucleus with excited states known
- Shell Model calculations indicate that states of ${ }^{92} \mathrm{Pd}$ are completely dominated by four isoscalar np pairs in the spin aligned $J^{\pi}=9^{+}$coupling

The Collaboration

Evidence for a spin-aligned neutron-proton paired phase from the level structure of ${ }^{92} \mathrm{Pd}$

B. Cederwall ${ }^{1}$, F. Ghazi Moradi ${ }^{1}$, T. Bäck ${ }^{1}$, A. Johnson ${ }^{1}$, J. Blomqvist ${ }^{1}$, E. Clément ${ }^{2}$, G. de France ${ }^{2}$, R. Wadsworth ${ }^{3}$, K. Andgren ${ }^{1}$, K. Lagergren ${ }^{1,4}$, A. Dijon ${ }^{2}$, G. Jaworski ${ }^{5,6}$, R. Liotta ${ }^{1}$, C. Qi ${ }^{1}$, B. M. Nyakó ${ }^{7}$, J. Nyberg ${ }^{8}$, M. Palacz ${ }^{5}$, H. Al-Azri ${ }^{3}$, A. Algora ${ }^{9}$, G. de Angelis ${ }^{10}$, A. Ataçç ${ }^{11}$, S. Bhattacharyya ${ }^{2} \dagger$, T. Brock 3, J. R. Brown ${ }^{3}$, P. Davies ${ }^{3}$, A. Di Nitto ${ }^{12}$, Zs. Dombrádi ${ }^{7}$, A. Gadea ${ }^{9}$, J. Gál ${ }^{7}$, B. Hadinia ${ }^{1}$, F. Johnston-Theasby ${ }^{3}$, P. Joshi ${ }^{3}$, K. Juhász ${ }^{13}$, R. Julin ${ }^{14}$, A. Jungclaus ${ }^{15}$, G. Kalinka ${ }^{7}$, S. O. Kara ${ }^{11}$, A. Khaplanov ${ }^{1}$, J. Kownacki ${ }^{5}$, G. La Rana ${ }^{12}$, S. M. Lenzi ${ }^{16}$, J. Molnár ${ }^{7}$, R. Moro ${ }^{12}$, D. R. Napoli ${ }^{10}$, B. S. Nara Singh ${ }^{3}$, A. Persson ${ }^{1}$, F. Recchia ${ }^{16}$, M. Sandzelius ${ }^{1} \dagger$, J.-N. Scheurer ${ }^{17}$, G. Sletten ${ }^{18}$, D. Sohler ${ }^{7}$, P.-A. Söderström ${ }^{8}$, M. J. Taylor ${ }^{3}$, J. Timár ${ }^{7}$, J. J. Valiente-Dobón ${ }^{10}$, E. Vardaci ${ }^{12}$ \& S. Williams ${ }^{19}$

[^0]
[^0]: ${ }^{1}$ Department of Physics, Royal Institute of Technology, SE-10691 Stockholm, Sweden. ${ }^{2}$ Grand Accélérateur National d'lons Lourds (GANIL), CEA/DSM - CNRS/IN2P3, F-14076 Caen Cedex 5, France. ${ }^{3}$ Department of Physics, University of York, York YO10 5DD, UK. ${ }^{4}$ Joint Institute for Heavy-Ion Research, Holifield Radioactive Ion Beam Facility, Oak Ridge, Tennessee 37831, USA. ${ }^{5}$ Heavy lon Laboratory, University of Warsaw, 02-093 Warsaw, Poland. ${ }^{6}$ Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland. ${ }^{7}$ Institute of Nuclear Research of the Hungarian Academy of Sciences, ATOMKI, H-4001 Debrecen, Hungary. ${ }^{8}$ Department of Physics and Astronomy, Uppsala University, SE-75121 Uppsala, Sweden. ${ }^{9}$ IFIC, CSIC, University of Valencia, E-46071 Valencia, Spain. ${ }^{19}$ Instituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, I-35020 Legnaro, Italy. ${ }^{11}$ Department of Physics, Ankara University, 06100 Tandogan Ankara, Turkey. ${ }^{12}$ Dipartimento di Scienze Fisiche, Università di Napoli and Instituto Nazionale di Fisica Nucleare, I-80126 Napoli, Italy. ${ }^{13}$ Department of Information Technology, University of Debrecen, H-4010 Debrecen, Hungary. ${ }^{14}$ Department of Physics, University of Jyväskylä, FIN-40014 Jyväskylä, Finland. ${ }^{15}$ Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain. ${ }^{16}$ Diparimento di Fisica dell'Università di Padova and Instituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35122 Padova, Italy. ${ }^{17}$ Université Bordeaux 1, CNRS/IN2P3, Centre d'Etudes Nucléaires de Bordeaux Gradignan, F-33175 Gradignan, France. ${ }^{18}$ The Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark. ${ }^{19}$ TRIUMF, Vancouver, British Columbia V6T 2A3, Canada. \dagger Present addresses: VECC, 1/AF Bidhan Nagar, Kolkata 700064, India (S.B.); Department of Physics, University of Jyväskylä, FIN-40014 Jyväskylä, Finland (M.S.).

