

Global dynamics and strangeness production in HI collisions @ 1-2A GeV with FOPI

Krzysztof Piasecki

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Poland

- Global dynamics of HI collisions:
 - Stopping, Flow, Yield ratios, Phase diagram
- Strangeness production
 - In-medium modifications of K^{+,-,0}
 - "Other" sources of K⁻: Σ (1385), ϕ
 - Neutral strangeness

Heavy Ion Collisions around E_{beam} = 1-2A GeV

- Equilibration at freeze-out ?
- Dynamical picture vs 2-dim phase diagram?

FOPI experimental setup

- Nearly 4π coverage
- Drift chambers: CDC, Helitron
 ToF : Plastic Barrel, RPC
 Forward: Plastic Wall, Zero Degree

NIPNE Bucharest, Romania **ITEP Moscow**, Russia **CRIP/KFKI** Budapest, Hungary LPC Clermont-Ferrand, France Korea University, Seoul, Korea IMP Lanzhou, China Kurchatov Institute Moscow, Russia **ITEP Moscow**, Russia TUM, Munich, Germany SMI Vienna, Austria GSI Darmstadt, Germany **IReS Strasbourg**, France FZ Rossendorf, Germany Univ. of Heidelberg, Germany Univ. of Warsaw, Poland RBI Zagreb, Croatia

Krzysztof Piasecki

Identificaton of charged particles

1. Global dynamics

- Nuclear stopping vs transparency
- Directed flow of charged barions
- Elliptic flow of charged barions

Rapidity distributions

- protons, deuterons 0 Ni+Ni @ 1.93A GeV (0) ^{Ap}/Np 30 Proton 20 10 0 10 Deuteron 5 0 -0.5 0.5 -1.5 0 -1 1.5 $y_z^{(0)}$ B.Hong et al (FOPI), PRC 57, 244 (1998) <u>Transparency</u> Initial state: Final state: transparent stopped
- All charged baryons: p,d,t,^{3,4}He,Li,... | Y_y ́У_х Variance t/l ratio: $vartl = \frac{\sigma^2(y_t)}{2}$ У_ (schematic) 232301 (2004) FOPI Central Stopping Stopping 0.9 100A MeV variance t/l ratio 1500A MeV 0.8 W.Reisdorf et al., PRL 92, 0.7 0.6 Au Ru Са 0.5 Ca+Ca Size dependence Са 0.4 2.0 160 0.8 1.6 40 80 120 0.4 1.2 Z system beam energy (GeV/A) Reasons: Low $T_{_{beam}} \rightarrow Pauli exclusion$ Partial transparency High $T_{\text{beam}} \rightarrow \text{in-medium } \sigma$ (?)

Krzysztof Piasecki

Side flow

Krzysztof Piasecki

Elliptic flow

- \rightarrow less side flow (p_{xdir})
 - \rightarrow less shadowing in-plane
 - \rightarrow less out-of-plane emission (v_2)

A.Andronic et al., Phys.Lett B 612, 173 (2005)

2. Strangeness in medium

- KN interaction (potential)
 - Directed flow
 - K momenta of π +A and p+A
 - K⁻/K⁺ as function of Kinetic Energy and Rapidity
- Other K⁻ sources
 - Σ^{±*} (1385) , φ

Sub- and Nearthreshold Production of Kaons

Production processes (dominant)

- K^{+0} and Y via multi-step processes $N + N \rightarrow \Delta + N \rightarrow K^{+,0} + Y + B$
- **K**⁻ production more complex :
 - via strangeness exchange reactions : $\pi + Y \leftrightarrow K^- + B$
 - coupled to resonances e.g. $\Sigma(1385)$, $\Lambda(1405)$ and $\Lambda(1520)$
 - K⁻N potential attractive

Probing partial restoration of chiral symmetry

- Ways to probe U(K) :
- Sideward Flow of kaons
- K-/K+ vs kinetic energy
- Decay constants
- Kaonic clusters

In-medium KN potential at $\rho < \rho_0$

Z. Rudy et al., EPJA 23, 379 (2005)

In-medium KN potential: K⁻/K⁺ yield

Data – vs – RBUU

- Clear preference for $U_{KN} > 0$ option
- Red/Blue = Soft/Hard EOS option
- Still description not ideal

K⁻ and K⁺ data from KaoS

- K⁻ production via resonances
- Some K⁻ from ϕ (outside medium)

K⁻ production in medium

Chiral perturbation theory (χPT)

Antikaon spectral function in dense matter

M.F.M. Lutz, PPNP 53, 125 (2004)

• Strange resonances in K⁻ production

$$\begin{split} \Sigma^{\pm^*} (1385) &\to \Lambda + \pi^{\pm} \quad (88 \pm 2\%) \\ &\mapsto p + \pi^{-} \end{split}$$

$$\begin{split} E_{\text{th}} &= 2.33 \text{ GeV} \qquad (subthreshold) \\ \Gamma &= 39.4 \text{ MeV}, \ \text{ct} = 5 \text{ fm} \quad (short \ lived) \end{split}$$

$$\begin{split} \frac{P(\Sigma^{*-} + \Sigma^{*+})}{P(\Lambda + \Sigma^{0})} &= 0.125 \pm 0.026 \pm 0.033 \end{split}$$

X. Lopez et al. (FOPI), PRC 76, 052203(R) (2007)

•

1.8

ϕ meson (s \overline{s})

- - Al+Al @ 1.93A GeV (P. Gasik)

•
$$P_{\phi}$$
 / collision = (2.2±0.5±0.2) · 10⁻⁴
 $\frac{P(\phi)}{P(K^{-})} = 0.27\pm0.10$

Ni+Ni @ 1.93A GeV (KP)

• P_{ϕ} / collision = $(6 \pm 1 \pm 2) \cdot 10^{-4}$ $\frac{P(\phi)}{P(K^{-})} = 0.44 \pm 0.13$

3. The Final Concerto

- Strange neutral particles: K⁰ and Λ⁰
- "Kinematical temperature"
- Statistical temperature
- Phase Diagram

${\rm K^0}$ and $\Lambda~$ at 1.9A GeV

M. Merschmeyer, X. Lopez et al. (FOPI), PRC 76, 024906 (2007)

M. Merschmeyer, X. Lopez et al. (FOPI), PRC 76, 024906 (2007)

K^0 and Λ : phase space analysis

$$E_{beam} = 1.93A \; GeV$$

A and K⁰ obeying
 Boltzmann distributions

A and proton:
 emission patterns
 different
 (p → transparency)

Temperature of colliding system

- Ni+Ni: radial flow AI+AI: almost no expansion
- Same kinetical freeze-out T in Al+Al and Ni+Ni (T ~ 90..100 MeV)

Statistical model: particle yields

Assumption: equilibrium @ chemical freeze-out

Density of species i (in grandcanonical ensemble): $n_{i}(\mu, T) = \frac{N_{i}}{V} = \frac{g_{i}}{2\pi^{2}} \int_{0}^{\infty} \frac{p^{2} dp}{\exp\left(\frac{E_{i} - \mu_{B}B_{i} - \mu_{S}S_{i} - \mu_{I_{3}}I_{3i}}{T}\right) \pm 1}$

Free parameters:

chemical potential μ_B temperature **T**

For particle *ratios* : V cancels out Fixed by conservation laws: μ_s , μ_{I3}

Yield ratios @ SPS

A.Andronic, P.Braun-Munzinger, J.Stachel NPA 772 (2006) 167

— looks promising

Particle yields at freeze-out

AI+AI

• 6 independent ratios with 5 strange particles : p, π^- , K⁰ Λ , ϕ , K^{*0}(892) and $\Sigma^{*\pm}(1385)$

Ni+Ni

8 independent ratios with 4 strange particles
 p,d, π[±], K[±], K⁰, φ, Λ

Statistical Model

(calc.: **THERMUS** code *S.Wheaton, J.Cleymans hep-ph/0407175*)

- Grand Canonical ensemble;
 For S≠0, Canonical ensemble
- T ~ 70 MeV, μ_B = 770 MeV
- For AI+AI, $\gamma_s \approx 1$
- Model fitting well

Freeze-out on phase diagram

P.Braun-Munzinger, J. Wambach, Rev. Mod. Phys 81, 1031 (2009)

Assumming those models, we obtain

12.05.2011

Is the equilibrium assumption wrong?

Need for more systematics

Particle yields and UrQMD

- No equilibration assumed
- Cascade model no mean field
 no in-medium effects
- Σ*± and K* reconstructable in experiment: Excluded decay products undergoing inelastic rescattering with medium

 UrQMD in agreement with data and Statistical Model

Either: More precise data needed

Or: Integrated yields are not a good signature to study thermalisation issues

Summary and conclusion

General dynamics of the collision at 1-2A GeV:

```
\begin{array}{ccc} stopping \rightarrow pressure \rightarrow side \ flow \rightarrow shadowing \rightarrow out-of-plane \ preference \\ vartl & max \ [p_{xdir}] & v_2 \end{array}
```

- In-medium modification of strangeness
 - $\begin{array}{ll} \rightarrow \ \mbox{Flow of } K^{+} & \rightarrow & V_{KN} \approx +20 \ \mbox{MeV} \\ \rightarrow \ \mbox{p}_{Kaon} \ (\mbox{Pb}) \ \mbox{/} \ \mbox{p}_{Kaon} \ \mbox{(C)} & \rightarrow & V_{KN} \approx +20 \ \mbox{MeV} \\ \rightarrow \ \mbox{K}^{+}/\mbox{K}^{-} \ \mbox{(E}_{kin}) \ \mbox{\rightarrow} & V_{KN} \approx +30 \ \mbox{MeV}, \ \mbox{V}_{\overline{KN}} \approx -70 \ \mbox{MeV} \ \mbox{(quantitative)} \\ \rightarrow \ \mbox{K}^{+} \ \mbox{and } \ \mbox{K}^{-} \ \mbox{separately} \ \mbox{ with in-medium better, but inconclusive} \end{array}$
- Other kaon sources [$\Sigma^*(1385)$, ϕ] may bias model calculations of in-medium effects
- Phase space analysis of particles \rightarrow "kinematical temperatures" T_{kine}
- Yield ratio compared to thermal model \rightarrow "thermal temperatures" T_{ther}
- Unexpected inversion $T_{kine} > T_{ther} \rightarrow thermal assumption wrong?$

