

Strangeness Physics with FOPI at GSI-SIS

Olaf N. Hartmann Austrian Academy of Sciences, Vienna

Seminar University of Warsaw Nov. 17th, 2011

Der Wissenschaftsfonds.

Contents

- The Heavy Ion Synchrotron SIS at the GSI
- The FOPI Detector
- Strangeness Production
 - Heavy ion collions (dense baryonic matter)
 - Proton+proton collisions
 - Pion induced reactions
- Future Plans
- Conclusions

SIS – Schwerionen-Synchrotron

216 m circumference18 Tm bending power

Beams at the SIS: lons (Li – U) \leq 2 GeV/u (A/q=2) Protons \leq 4.5 GeV Pions \leq 2.8 GeV/c

- Accelerator physics
- Atomic physics
- Nuclear physics
- Bio physics
- Plasma physics
- Material research
- Theory

The Facility for Antiproton and Ion Research

later: RESR, FLAIR, SIS300

First Physics expected in 2018

The FOPI Detector

NIPNE Bucharest, KFKI Budapest, LPC Clermont-Ferrand, GSI Darmstadt, FZ Dresden-Rossendorf, University Heidelberg, ITEP Moscow, KI Moscow, TU Munich, Korea U Seoul, IReS Strasbourg, University Warsaw, SMI Vienna, RBI Zagreb

Particle Identification

Event Display Central Drift Chamber (x,y) plane Ni+Ni@1.93 AGeV

> PID: Matched tracks CDC-RPC

kp_rpc_pid_1808_3239_ml0_mh100_060510_dstAB^{010/05/16_01.53}

Forward Detectors Helitron+ Plastic Wall

Reconstruction of neutral particles like Λ , K^0_s from their charged decay products

The RPC Time-of-Flight Barrel

(FOPI Phase III)

Multigap-Multistrip RPC $\sigma(RPC)$: 67 ps $\sigma(system)$: ca. 90 ps

Charged Kaon Identification

Why Strangeness?

Modification of Particle **Properties in Medium** (density and temperature dependent)

Σ^{*}(1385) Λ^{*}(1405) poles 1500 ** _____ ^*(1520) 1000 $\Lambda(1116) \Sigma(1195)$ [MeV] Λπ Σπ Δη Ση **KN-threshold** Complicated Situation due to the presence of resonances

Strong attractive Interaction of the Antikaon in the Medium

- Flow
- Bound States

Systems studied by FOPI 2003-2011

- Heavy Ion Reactions
 K⁰, K[±], Λ, φ, K^{*}, Σ^{*}
 Ni+Ni (1.93 and 1.91 AGeV), Al+Al (1.91 AGeV),
 Ni+Pb (1.91 AGeV), Ru+Ru (1.69 AGeV)
- Pion Induced Reactions
 K⁰, K[±], Λ, φ
 π⁻ + C, Al, Cu, Sn, Pb (1.15 GeV/c, 1.7 GeV/c)
- Proton+proton 3.1 GeV search for ppK⁻ bound state

Charged Kaon Yields

K. Wisniewski et al., EPJA9(2000)

Yield ratio varies of the studied region of phase space

→ in-medium modifications of charged Kaon properties? Comparison to transport Models (RBUU, filtered)

 \rightarrow non-zero in-medium potentials suggested

Charged Kaon Flow

Looking to Flow in terms of v_1 and v_2

$$\frac{dN}{d\phi} \propto 1 + v_1 \cos \phi + v_2 \cos 2\phi$$

Sideward Flow (v_1) of K⁺ -1.2< Y⁰ < -0.6 low $p_t \rightarrow$ anti-flow

 $\sigma_{geo}{\approx}200mb$

Comparison to transport model (filtered): In-medium repulsive potential of 20 MeV

but: Proton flow not consistently described

K⁻ not available at this time

Charged Kaon Flow Updated

T.I. Kang, V. Zinyuk (Heidelberg)

Data consistent with previous ones

Ni+Ni. 1.91 AGeV (S325, S325e)

Transport models (filtered) Potentials at $\rho = \rho_0$: HSD: U(K⁺)=20 MeV, U(K⁻)=50 MeV IQMD: U(K⁺)=40 MeV, U(K⁻)=90 MeV

Small sideflow of K⁺ Vanishing K⁻ sideflow

K⁺ elliptic flow <0 (out of plane) K⁻ sideflow consitent with zero

Short lived Strange Resonances

 $\Sigma^* \rightarrow \Lambda + \pi (88\pm 2\%)$ $\Gamma = 39.4$ MeV, $c\tau = 5$ fm NN-threshold 2.33 GeV $K^* \rightarrow K + \pi$ $\Gamma = 50.7 \text{ MeV}, c\tau = 4 \text{ fm}$ NN-threshold 2.75 GeV

Al+Al 1.92 AGeV, 5.108 events, P_{det}~10⁻⁵

Reconstructable consistent with PDG values

$K^{+/-}$ and ϕ in Ni+Ni and Al+Al

P. Gasik, K. Piasecki 2009, 2010

m=1019 MeV, Γ=(4.26±0.04) MeV

HADES: PRC 80(2009)025209

Strange Meson-Baryon Clusters

ркр

Deeply bound \overline{K} clusters?

Y. Akaishi and T. Yamazaki, PRC65(2002)044005

binding energies even > 100 MeV

 \rightarrow Production of "prototype" state, ppK⁻, in p+p collions

Evidences for ppK⁻

PRL94(2005)212303

-150 -100 -50

2.25 2.3 2.35

2.45

2.5

PRL104(2010)132502

NPA789(2007)222

Data are not consistent and differ from predicted values for B.E. and width!

Status FOPI ppK⁻ in Heavy lons

N. Herrmann, J.Phys.G(2010) Λ-p correlations

m=2.134 GeV \pm 4 MeV Γ = 26 \pm 14 MeV (statistical err.)

Peak (cusp) at NΣ threshold ? seen in p+p collisions FSI ?

COSY-TOF preliminary 2.95 GeV/c proton momentum (2.16 GeV) $\sigma(p+p\rightarrow pK^+\Lambda) \approx 30 \ \mu b$

Search for ppK⁻ in p+p

Data taking 08-09/2009 R. Münzer, München p + p <u>3.1 GeV</u> Λ(1405) + p + K⁺ LH2 target + SIAVIO(silicon strip detectors) → ppK⁻ +<mark>K</mark>† M>1 Analysis still in progress M>0 • Λ reconstruction K⁺ identification Silvio B Ap correlation Suppression of non-strange K⁺ missing mass background by factor 20

(simulation with UrQMD)

Two body final state?

Search for ppK⁻ in p+p

Light Hypernuclei

Y.P. Zhang (Heidelberg)

3-body decay and heavier hypernuclei under study

yields (ratios) not understood so far ...

Pion Induced Reactions 1.15 GeV/c

K⁰ inclusive cross section Data FOPI (π+A) ISD (U=20 MeV) Fit o=o_ff*Ab Data (π+N) σ*A^{2/3} QMC ($\rho = \rho_0$) **(mb)** 10 10² 10 Α

> σ_{eff} = (0.87 ± 0.13) mb b = 0.68 ± 0.03

 $\pi^- p \rightarrow K^0 \Lambda$

dashed: $\rho = \rho_0$

K. Tsushima et al., PRC62

Pion Induced Reactions 1.15 GeV/c

inclusive cross sections

Comparison to HSD \rightarrow repulsive Potential of ~ 20 MeV Ongoing analysis: A yields

1.15 GeV/c π + C

refitting of Helitron-PLAWA tracks with silicon tracker information (if available)

Pion Induced Reactions at 1.7 GeV/c

K⁺/K[−] spectra

φ yields

 $\pi^- + p \rightarrow \phi + n \rightarrow K^+ K^- + n$

Data taking finished end of June 2011, calibration and analysis ongoing

Experimental Data on the Φ in medium

Experiment	Chan	In-medium mass	In-medium width	Reference
KEK-PS E325 12 GeV p+C 12 GeV p+Cu	K+K-	M _{inv} reproduced by rel. Breit-Wigner	Yield $\sigma = \sigma_0 A^{\alpha}$ $\alpha^{\Phi}_{KK} - \alpha^{\Phi}_{ee} = 0.14 \pm 0.12$ Γ_{KK} increased by factor ≤ 6	Sakuma et al., PRL98(2007)152302
	e⁺e⁻	For $\beta\gamma$ <1.25 excess on low mass side of M _{inv} \rightarrow 3.4% mass decrease	Γ_{ee} increased by factor 3.6 at ρ_0	Muto et al., PRL98(2007)042501
Spring-8-LEPS 1.5-2.4 GeV γ+Li, C, Al, Cu	K+K-	≡ free Φ	yield~ $A^{0.72\pm0.07} \rightarrow \sigma_{\phi N} = (35^{+17}_{-11}) \text{ mb}$ ($\Gamma^{\sim} 80 \text{ MeV/c}^2$, ANKE conditions)	Ishikawa et al., PLB608(2005)215
JLab-CLAS ≤4 GeV γ+ H,C,Ti, Fe, Pb	e⁺e⁻		Transparency ratio $\sigma_{\phi N}$ = 16 to 70 mb	Wood et al., PRL105(2010)112301
COSY-ANKE 2.83 GeV p+C, Cu, Ag, Au	K⁺K⁻		Transparency ratio yield~ $A^{0.56\pm0.03} \rightarrow \Gamma \sim 50 \text{ MeV/c}^2$	Polyanskiy et al., PLB695(2011)74

Φ significantly broadened in nuclear medium, no (or small) mass shift

Transparency Ratio

photoproduction data:

measure φ yields as a function of mass number ("attenuation measurement")

→ deduce in medium-properties comparing to transport model

GiBUU prediction for K⁺K⁻ events:

р	1.5·10 ⁻³ /event
¹² C	4.8 ·10⁻⁴/event
⁶³ Cu	3.3 ·10⁻⁴/event
²⁰⁸ Pb	2.0 ·10 ⁻⁴ /event

(no in-medium potential)

Pion Induced Reactions at 1.7 GeV/c

New setup, designed and built at SMI Vienna

- foresees two silicon stations (sensors in vacuum)
- enter in inner hole of TPC (10 cm diameter)
- VETO counter (scintillators, read out by SiPM, 3.5 cm hole) close to the target

The two SSD's where eventually not mounted (readout problems with N-XYTER chip)

Pion Induced Reactions at 1.7 GeV/c

GEM-TPC

M. Berger, München

TPC as upgrade for FOPI:

- Vertex resolution: ~1 mm in X,Y + Z
- Larger geometrical acceptance for:
 - Λ and K^{0}_{s}
- Improved resolution of secondary vertices (min factor 10)
- \rightarrow good for weakly decaying resonances

Future Plans

- The June 2011 pion beam experiment was the last official FOPI beamtime
- Replace/extend hardware with components for FAIR experiments (CBM, PANDA)
- Exploit improved resolution: GEM-TPC
- Physics case: double strangeness production (Ξ⁻X, K⁻K⁻X)
 - Pion beam
 - ³He beam

Conclusions

- FOPI@SIS since > 20 years
- New hardware (RPC, SIAVIO, GEM-TPC, ...)
- Measurement of reactions involving strangeness
- New results on charged kaon flow, associated strangeness production, bound states including hypernuclei
 - Still many open questions, theoretical effort needed
- Ongoing analysis (e.g. φ/K⁺K⁻ production in medium)