Piotr Bednarczyk

Instytut Fizyki Jądrowej im. Henryka Niewodniczańskiego Polskiej Akademii Nauk

Badania eksperymentalne kolektywnej struktury nuklidów z pobliża jąder magicznych- ⁴⁰Ca i ⁵⁶Ni, przy wysokim spinie IFJ PAN, Zakład Spektroskopii Jądra Atomowego, Spektroskopia Wysokospinowa i Rozwój Aparatury:

P.Bednarczyk, M.Ciemała*, A.Czermak, B.Dulny, B.Fornal, J.Grębosz, M.Kmiecik, M.Krzysiek*, A.Maj, M.Matejska-Minda*, K.Mazurek, W.Męczyński, B.Sowicki, J.Styczeń, M.Ziębliński *student PhD

<u>Współpraca z laboratoriami akceleratorowymi:</u> IPHC-IRES, Strasbourg, Fr LNL-INFN, Legnaro, It GANIL, Caen, Fr ŚLCJ, Warszawa

Program

- Wprowadzenie:
 - deformacja jądrowa na przykładzie pasm superzdeformowanych
 - rotacja a koherentny ruch jednocząstkowy
 - zakończenie pasm rotacyjnych
- Wielodetektorowe spektrometry gamma, przełom w badaniach struktury jądra
- Rola detektorów pomocniczych
 - krakowski Detektor Jąder Odrzutu (RFD)
- Wysokospinowa spektroskopia γ izobarów A=45 (Sc, Ti, V),
 - -Znaczenie wyników dla rozwoju metod średniego pola
- Identyfikacja silnej deformacji w obszarze jąder trójosiowych A~70
- Perspektywy pomiarów koincydencyjnych γ-jądro odrzutu na wiązkach stabilnych i radioaktywnych

Kształty jąder atomowych

Deformacja kwadrupolowa:

$$r \sim (1 + \beta_2 Y_{20}(\theta, \varphi))$$
$$\beta_2 \sim \frac{\Delta R}{R}$$

Moment elektryczny kwadrupolowy:

$$eQ_0 \cong \frac{3}{\sqrt{5\pi}} ZeR_0^2\beta_2(1+0.36\beta_2)$$

Stabilizacja kształtu poprzez efekty powłokowe

Cząstka w polu o osiowej deformacji

Stan metastabilny (izomer kształtu)

Seminarium Fizyka Jądra Atomowego UW

1.0

Widmo emisyjne idealnego rotora (superdeformacja)

Rotacja czy koherentny ruch nukleonów ?

$$B(E2) \propto \frac{1}{E_{\gamma}^5 \tau}$$

wysycenie rotacji (158Er: ~50 \hbar)-

<u>Specyficzna własność jądra</u> <u>atomowego</u>

Przywrócenie kolektywności przy najwyższych spinach

Obszary jąder zdeformowanych

Złota dekada w spektroskopii γ i optymistyczne prognozy...

..KONIECZNE DETEKTORY POMOCNICZE

Rewolucja w badaniach strukturalnych-wielodetektorowe spektrometry γ

٥

- Osłony ACS- redukcja tła komptonowskiego ٢ ٥
 - Detektory kompozytowe duża granularność
 - Czułość na promieniowanie o wysokiej krotności

Nowa jakość: *y-tracking*

Krakowski detektor jąder odrzutu- RFD

Recoil Filter Detector – zasada działania

 RFD - detektor ciężkich jonów (rezyduów wyparowania) rejestrowanych w koincydencji z promieniowaniem γ

Pomiar czasu przelotu (TOF) umożliwia selekcję jąder odrzutu

 Wykorzystanie w systemach detekcyjnych:
 OSIRIS 12HPGe , HMI Berlin
 EUROBALL, IRES-IPHC, Strasbourg
 -GASP 40HPGe, LNL, Legnaro

Technika detekcji jonów

Rejestracja wiązki wtórnych elektronów

Poprawa jakości mierzonych widm γ

92 MeV ¹⁶O + 0.4 mg/cm² ²⁰⁸Pb

- Ciężkie jądra odrzutu
 redukcja tła z rozszczepienia
 - \checkmark reakcje z niskim przekrojem czynnym $\sigma \sim 0.1$ mbarn

Wysoka prędkosc odrzutu:
 ✓ redukcja poszerzenia dopplerowskiego

Symulacja rozdzielczości energetycznej GASP vs AGATA ^{G. Jaworski}

GASP: ^e

ε=**5.0%** Δθ~ 10°

AGATA 3Π: ε=22% Δθ~ 1°

Symulacja rozdzielczości energetycznej GASP vs AGATA ^{G. Jaworski}

FWHM = 2.4 keV @ 1.3 MeV

GASP:

AGATA 3Π: ε=22% Δθ~ 1°

Pomiar krótkich czasów życia stanów jądrowych

- Emisja wewnątrz tarczy (B) zachodzi przy większej prędkości
- Liczba rozpadów za tarczą (A) w stosunku do pełnego natężenia linii (A+B) zależy od τ

Efekty kolektywne w lekkich jądrach powłoki f_{7/2}

Niskie spiny /~1980/:

- > Stany połączone szybkimi przejściami E2 dobrze opisywane przez model powłokowy
- > Niskoleżące pasma o wysokiej deformacji związane ze wzbudzeniem rdzenia ⁴⁰Ca

Trudności eksperymentalne:

- Duże prędkości odrzutu
- > Wysokie energie przejść
- Znaczne poszerzenie dopplerowskie

Wysokie spiny /2000-/:

- > Wielolicznikowe układy detektorów Ge
- > Mikroskopowy opis rotacji w ⁴⁸Cr
- Superdeformacja w ^{36,40}Ar, ^{40,42}Ca, ⁴⁴Ti

Źródła deformacji w lekkich jądrach $f_{7/2}$

Mikroskopowy opis rotacji w ⁴⁸Cr

Superdeformacja w jądrach $f_{7/2}$

- Opis SM w przestrzeni *sdfp*
- 4 cząstki na orbitalu
 1f_{7/2} ([300]1/2)
- 🜻 8 dziur w rdzeniu

1d_{3/2}

Wysokospinowe rozwinięcie pasma typu cząstka-dziura w ⁴⁵Sc

Wysycenie pasm rotacyjnych w ⁴⁵Sc

EUROBALL + RFD

P.Bednarczyk et al. (2001)

Wysycenie pasm rotacyjnych w ⁴⁵Sc

Wysycenie pasm rotacyjnych w ⁴⁵Sc

Rozwikłanie schematu poziomów π =+ w ⁴⁵Ti

⁴⁵Ti – skrzyżowanie pasm w ujęciu SM

Przetrwanie wysokiej deformacji w paśmie T=0 w ⁴⁵Ti

